Feeds:
Posts
Comments

Archive for the ‘Africa’ Category

 

sorghum

Original Article:

heritagedaily.com

 

Archaeologists examining plant impressions within broken pottery have discovered the earliest evidence for domesticated sorghum in Africa.

The evidence comes from an archaeological site (known as KG23) in eastern Sudan, dating from 3500 to 3000 BC, and is associated with an ancient archaeological culture known as the Butana Group.
Sorghum is a native African grass that was utilized for thousands of years by prehistoric peoples, and emerged as one of the world’s five most important cereal crops, along with rice, wheat, barley, and maize.
For a half century scholars have hypothesized that native African groups were domesticating sorghum outside the winter rainfall zone of the ancient Egyptian Nile Valley (where wheat and barley cereals were predominant) in the semi-arid tropics of Africa, but no archaeological evidence existed.
This new discovery in eastern Sudan reveals that during the 4th millennium BC, peoples of the Butana Group were intensively cultivating wild stands of sorghum until they began to change the plant genetically into domesticated morphotypes.
Along with the recent discovery of domesticated pearl millet in eastern Mali around 2500 BC, this latest discovery in eastern Sudan pushes back the process for domesticating summer rainfall cereals another thousand years in the Sahel, with sorghum, providing new evidence for the earliest known native African cultigen.
UNIVERSITY OF CHICAGO PRESS JOURNALS

Advertisements

Read Full Post »

Discovery reveals plant-based menu of prehistoric man

 

Original Article:

popular- archaeology.com

780,000 year old remains of edible fruits and seeds discovered in the northern Jordan Valley. Credit: Yaakov Langsam

 

THE HEBREW UNIVERSITY OF JERUSALEM—A tiny grape pip (scale 1mm), left on the ground some 780,000 years ago, is one of more than 9,000 remains of edible plants discovered in an old Stone Age site in Israel on the shoreline of Lake Hula in the northern Jordan valley, dating back to the Acheulian culture from 1.75-0.25 million years ago. The floral collection provides rich testimony of the plant-based diet of our prehistoric ancestors.

While around the world remains of Paleolithic plants are scarce, this unique macro-botanical assemblage has allowed researchers from the Hebrew University of Jerusalem and Bar Ilan University to study the vegetal diet of humans from early-mid-Pleistocene, which is central to understanding the evolution, adaptation and exploitation of the environment by hominins.
The findings were recovered during archeological excavations at the waterlogged site of Gesher Benot Ya’aqov, where the earliest evidence of human-controlled fire in western Asia was discovered in recent years.
Prof. Naama Goren-Inbar of the Institute of Archeology at the Hebrew University of Jerusalem, who conducted the excavations with colleagues, have long studied findings of hominid occupations in the Levantine Corridor, through which several hominin waves dispersed out of Africa.
In a research paper that will be published in the Proceedings of the National Academy of Sciences (PNAS) on December 5, titled “The plant component of an Acheulian diet: a case study from Gesher Benot Ya’aqov, Israel”, Prof. Goren-Inbar reveals the discovery of the ancient macrobotanical remains, which for the first time indicate to the rich variety of plant assortments and subsistence opportunities that were available to the early humans on the transition from an African-based to a Eurasian diet.
“In recent years we were met with a golden opportunity to reveal numerous remains of fruits, nuts and seeds from trees, shrubs and the lake, alongside the remains of animals and man-made stone tools in one locality,” Prof. Goren-Inbar said.
Of the remains found on site, Prof. Goren-Inbar and Dr. Yoel Melamed of the Faculty of Life Sciences at Bar Ilan University have identified 55 species of edible plants, including seeds, fruits, nuts, leaves, stems, roots and tubers.

The findings, many of them minor in size, have been preserved for hundreds of thousands of years thanks to the damp conditions in the vicinity of the site, said Dr. Melamed. The basalts under and in the site were dated by Ar/Ar and the dates were further confirmed by results of paleomagnetic analyses.
“This region is known for the wealth of plants, but what surprised us were the sources of plant food coming from the lake. We found more than 10 species that existed here in prehistoric times but no longer today, such as two types of water nuts, from which seven were edible,” explained Dr. Melamed.

The site was submerged under the Jordan River and the Hula Lake in conditions of humidity and lack of oxygen, aided by the fast covering of layers of sediments, in which archaeologists also found stone tools and animal fossils.
Gesher Benot Ya’aqov is also the place where Prof. Goren-Inbar found the earliest evidence of the use of fire in Eurasia (LINK). “The use of fire is very important because a lot of the plants are toxic or inedible. Using fire, like roasting nuts and roots for example, allows the use of various parts of the plant and increases the diversity of the plant component of the Acheulian diet, alongside aquatic and terrestrial fauna,” said Prof. Goren-Inbar.
The use of fire and the availability of a diverse range of flora highlight the ability of prehistoric man to adjust to a new environment, to exploit the environment for his own benefit and to colonize beyond Africa.
Article Source: Hebrew University press release.

 

Read Full Post »

Bicolor Sorghum

 

Original article:

Sci-news.com

 

Sorghum was domesticated from its wild ancestor more than 5,000 years ago, according to archaeological evidence uncovered by University College London archaeologist Dorian Fuller and colleagues in Sudan.

Sorghum (Sorghum bicolor) is a native African grass that was utilized for thousands of years by prehistoric peoples, and emerged as one of the world’s five most important cereal crops, along with rice, wheat, barley, and maize.

For a half century scientists have hypothesized that native African groups were domesticating sorghum outside the winter rainfall zone of the ancient Egyptian Nile Valley — where wheat and barley cereals were predominant — in the semi-arid tropics of Africa, but no archaeological evidence existed.

The newest evidence comes from an archaeological site near Kassala in eastern Sudan, dating from 3500 to 3000 BC, and is associated with the Butana Group culture.

“This new discovery in eastern Sudan reveals that during the 4th millennium BC, peoples of the Butana Group were intensively cultivating wild stands of sorghum until they began to change the plant genetically into domesticated morphotypes,” Dr. Fuller and co-authors said.

 

The researchers examined plant impressions within broken pottery from the largest Butana Group site, KG23.

“Ceramic sherds recovered from excavations undertaken by the Southern Methodist University Butana Project during the 1980s from the KG23 site were analyzed,” they explained.

“Examination of the plant impressions in the pottery revealed diagnostic chaff in which both domesticated and wild sorghum types were identified, thus providing archaeobotanical evidence for the beginnings of cultivation and emergence of domesticated characteristics within sorghum during the 4th millennium BC in eastern Sudan.”

“Along with the recent discovery of domesticated pearl millet in eastern Mali around 2500 BC, this discovery pushes back the process for domesticating summer rainfall cereals another thousand years in the Sahel, with sorghum, providing new evidence for the earliest known native African cultigen,” they said.

The research is published in the journal Current Anthropology.

_____

Read Full Post »

CAPTION
Carol Lang, University of York, examines the terrace systems of Engaruka.
CREDIT
University of York

Researchers at the University of York working on a 700-year-old abandoned agricultural site in Tanzania have shown that soil erosion benefited farming practices for some 500 years.

Source: ‘Lost city’ used 500 years of soil erosion to benefit crop farming

Read Full Post »

 

 

 

126222_web

The discarded bone of a chicken leg, still etched with teeth marks from a dinner thousands of years ago, provides some of the oldest known physical evidence for the introduction of domesticated chickens to the continent of Africa, research from Washington University in St. Louis has confirmed.

Based on radiocarbon dating of about 30 chicken bones unearthed at the site of an ancient farming village in present-day Ethiopia, the findings shed new light on how domesticated chickens crossed ancient roads — and seas — to reach farms and plates in Africa and, eventually, every other corner of the globe.

“Our study provides the earliest directly dated evidence for the presence of chickens in Africa and points to the significance of Red Sea and East African trade routes in the introduction of the chicken,” said Helina Woldekiros, lead author and a postdoctoral anthropology researcher in Arts & Sciences at Washington University.

The main wild ancestor of today’s chickens, the red junglefowl Gallus gallus is endemic to sub-Himalayan northern India, southern China and Southeast Asia, where chickens were first domesticated 6,000-8,000 years ago. Now nearly ubiquitous around the world, the offspring of these first-domesticated chickens are providing modern researchers with valuable clues to ancient agricultural and trade contacts.

The arrival of chickens in Africa and the routes by which they both entered and dispersed across the continent are not well known. Previous research based on representations of chickens on ceramics and paintings, plus bones from other archaeological sites, suggested that chickens were first introduced to Africa through North Africa, Egypt and the Nile Valley about 2,500 years ago.

The earliest bone-based evidence of chickens in Africa dates to the late first millennium B.C., from the Saite levels at Buto, Egypt — approximately 685-525 B.C.

This study, published in the International Journal of Osteoarchaeology, pushes that date back by hundreds of years. Co-authored by Catherine D’Andrea, professor of archaeology at Simon Fraser University in Canada, the research also suggests that the earliest introductions may have come from trade routes on the continent’s eastern coast.

“Some of these bones were directly radiocarbon dated to 819-755 B.C., and with charcoal dates of 919-801 B.C. make these the earliest chickens in Africa,” Woldekiros said. “They predate the earliest known Egyptian chickens by at least 300 years and highlight early exotic faunal exchanges in the Horn of Africa during the early first millennium B.C.”

Despite their widespread, modern-day importance, chicken remains are found in small numbers at archaeological sites. Because wild relatives of the galliform chicken species are plentiful in Africa, this study required researchers to sift through the remnants of many small bird species to identify bones with the unique sizes and shapes that are characteristic of domestic chickens.

Woldekiros, the project’s zooarchaeologist, studied the chicken bones at a field lab in northern Ethiopia and confirmed her identifications using a comparative bone collection at the Institute of Paleoanatomy at Ludwig Maximillian University in Munich.

Excavated by a team of researchers led by D’Andrea of Simon Fraser, the bones analyzed for this study were recovered from the kitchen and living floors of an ancient farming community known as Mezber. The rural village was located in northern Ethiopia about 30 miles from the urban center of the pre-Aksumite civilization. The pre-Aksumites were the earliest people in the Horn of Africa to form complex, urban-rural trading networks.

Linguistic studies of ancient root words for chickens in African languages suggest multiple introductions of chickens to Africa following different routes: from North Africa through the Sahara to West Africa; and from the East African coast to Central Africa. Scholars also have demonstrated the biodiversity of modern-day African village chickens through molecular genetic studies.

“It is likely that people brought chickens to Ethiopia and the Horn of Africa repeatedly over long period of time: over 1,000 years,” Woldekiros said. “Our archaeological findings help to explain the genetic diversity of modern Africans chickens resulting from the introduction of diverse chicken lineages coming from early Arabian and South Asian context and later Swahili networks.”

These findings contribute to broader stories of ways in which people move domestic animals around the world through migration, exchange and trade. Ancient introductions of domestic animals to new regions were not always successful. Zooarchaeological studies of the most popular domestic animals such as cattle, sheep, goats and pigs have demonstrated repeated introductions as well as failures of new species in different regions of the world.

“Our study also supports the African Red Sea coast as one possible early route of introduction of chickens to Africa and the Horn,” Woldekiros said. “It fits with ways in which maritime exchange networks were important for global distribution of chicken and other agricultural products. The early dates for chickens at Mezber, combined with their presence in all of the occupation phases at Mezber and in Aksumite contexts 40 B.C.- 600 A.D. in other parts of Ethiopia, demonstrate their long-term success in northern Ethiopia.”

Source: How the chicken crossed the Red Sea

eurekalert.org

Read Full Post »

 

Madagascar1

 

Original Article:

uq.edu.au

 

Remnants of ancient crops have provided researchers with clues that could help map the movement of humans across the globe more than 1300 years ago.

The University of Queensland-led international study has uncovered the first direct archaeological evidence that Madagascar was colonised by a Southeast Asian community.

UQ School of Social Science archaeologist Dr Alison Crowther said genetic research had confirmed that the inhabitants of Madagascar shared close ancestry with Southeast Asians, but archaeologists had until now struggled to find evidence of their early presence on the island.

“We have now identified 2443 individual crop remains,” she said.

“The remains were obtained through archaeological excavations at 18 ancient settlement sites in Madagascar, the Comoros and coastal eastern Africa dating back to the 7th to 12th centuries.

“What was amazing to us was the stark contrast that emerged between the crops on the east African coast and offshore islands versus those on Madagascar and the nearby Comoros Islands.

“The more we looked, the starker the contrast became.

“The samples taken from sites on Madagascar and the Comoros contained few or no African crops, but were instead dominated by species such as Asian rice, mung bean and Asian cotton,” she said.

By examining where else in the Indian Ocean these crops were grown, and drawing on historical and linguistic data, the team was able to make a strong case that the crops reached Madagascar from Island Southeast Asia.

Fellow researcher and Max Planck Institute for the Science of Human History Director of Archaeology Dr Nicole Boivin said there was still a lot to learn about the island’s past.

“But what is exciting is that we finally have a way of providing a window into the island’s highly mysterious Southeast Asian settlement and distinguishing it from settlement by mainland Africans,” she said.

“This means that archaeologists can use those remains to finally start to provide real material insights into the colonisation process.”

The research team plans to return to Madagascar to continue the work. Dr Crowther said much work remains to be done.

“We are keen to understand who these people were and what impact they had,” she said.

The team’s findings are published in Proceedings of the National Academy of Sciences.

Media contacts: Alison Crowther, 0400 636 350, 3365 2757, a.crowther@uq.edu.au

Read Full Post »

ig

The fossilized skull of Australopithecus sediba specimen MH1 and a finite element model of its cranium depicting strains experienced during a simulated bite on its premolars. “Warm” colors indicate regions of high strain, “cool” colors indicate regions of low strain. Credit: WUSTL GRAPHIC: Image of MH1 by Brett Eloff provided courtesy of Lee Berger and the University of the Witwatersrand.

Original Article:

popular-archaeology.com

Feb 8, 2016

Research published in 2012 garnered international attention by suggesting that Australopithecus sediba (A. sediba), a possible early human ancestor species discovered in South Africa by anthropologist Lee Berger, had lived on a diverse woodland diet including hard foods mixed in with tree bark, fruit, leaves and other plant products.

But new research by an international team of researchers now shows that A. sediba didn’t have the jaw and tooth structure necessary to exist on a steady diet of hard foods.

“Most australopiths had amazing adaptations in their jaws, teeth and faces that allowed them to process foods that were difficult to chew or crack open. Among other things, they were able to efficiently bite down on foods with very high forces,” said team leader David Strait, PhD, professor of anthropology in Arts & Sciences at Washington University in St. Louis.

“Australopithecus sediba is thought by some researchers to lie near the ancestry of Homo, the group to which our species belongs,” said Justin Ledogar, PhD, Strait’s former graduate student and now a researcher at the University of New England in Australia. “Now we find that A. sediba had an important limitation on its ability to bite powerfully; if it had bitten as hard as possible on its molar teeth using the full force of its chewing muscles, it would have dislocated its jaw.”

The study, published Feb. 8 in the journal Nature Communications, describes biomechanical testing of a computer-based model of an A. sediba skull. The model is based on the fossil skull recovered in 2008 from the Malapa fossil site by Berger and his team. Malapa is a cave near Johannesburg, South Africa. The biomechanical methods used in the study are similar to those used by engineers to test whether or not planes, cars, machine parts or other mechanical devices are strong enough to avoid breaking during use.

A. sediba, a diminutive pre-human species that lived about two million years ago in southern Africa, has been heralded as a possible ancestor or close relative of Homo. Australopiths appear in the fossil record about four million years ago, and although they have some human traits like the ability to walk upright on two legs, most of them lack other characteristically human features like a large brain, flat faces with small jaws and teeth, and advanced tool-use.

Humans in the genus Homo are almost certainly descended from an australopith ancestor, and A. sediba is a candidate to be either that ancestor or something similar to it.

Some of the researchers who described A. sediba are also authors on the biomechanical study, including Lee Berger, PhD, and Kristian Carlson, PhD, of the University of the Witwatersrand, and Darryl de Ruiter, PhD, of Texas A&M University. Amanda Smith, PhD, a postdoctoral fellow in physical anthropology at Washington University, also participated in the research.

The new study does not directly address whether Australopithecus sediba is indeed a close evolutionary relative of early Homo, but it does provide further evidence that dietary changes were shaping the evolutionary paths of early humans.

“Humans also have this limitation on biting forcefully and we suspect that early Homo had it as well, yet the other australopiths that we have examined are not nearly as limited in this regard,” Ledogar said. “This means that whereas some australopith populations were evolving adaptations to maximize their ability to bite powerfully, others (including A. sediba) were evolving in the opposite direction.”

“Some of these ultimately gave rise to Homo,” Strait said. “Thus, a key to understanding the origin of our genus is to realize that ecological factors must have disrupted the feeding behaviors and diets of australopiths. Diet is likely to have played a key role in the origin of Homo.”

Strait, a paleoanthropologist who has written about the ecological adaptations and evolutionary relationships of early humans, as well as the origin and evolution of bipedalism, said this study offers a good example of how the tools of engineering can be used to answer evolutionary questions. In this case, they help us to better understand what the facial skeleton can tell us about the diet and lifestyles of humans and other primates.

“Our study provides a really nice demonstration of the difference between reconstructing the behaviors of extinct animals and understanding their adaptations.” Strait said. “Examination of the microscopic damage on the surfaces of the teeth of A. sediba has led to the conclusion that the two individuals known from this species must have eaten hard foods shortly before they died. This gives us information about their feeding behavior. Yet, an ability to bite powerfully is needed in order to eat hard foods like nuts or seeds. This tells us that even though A. sediba may have been able to eat some hard foods, it is very unlikely to have been adapted to eat hard foods.”

The bottom line, Strait said, is that the consumption of hard foods is very unlikely to have led natural selection to favor the evolution of a feeding system that was limited in its ability to bite powerfully. This means that the foods that were important to the survival of A. sediba probably could have been eaten relatively easily without high forces.

Source: Subject press release of the University of the Witwatersrand, Johannesburg, South Africa and Washington University in St. Louis, Missouri.

 

Read Full Post »

Older Posts »

%d bloggers like this: