Feeds:
Posts
Comments

Posts Tagged ‘agriculture’

Original article:

Nature.com

Changes to flowering times helped the staple crop spread into new areas thousands of years ago.

Genome sequences from nearly 2,000-year-old cobs of maize (corn) found in a Utah cave paint a portrait of the crop at the dawn of its adaptation to the highlands of the US southwest. That maize, researchers found, was small, bushy and — crucially — had developed the genetic traits it needed to survive the short growing seasons of high altitudes.

The team’s study1, published on 3 August in Science, is remarkable in how it tackles complex genetic traits governed by the interactions of many different genes, say researchers. It uses that information to create a detailed snapshot of a crop in the middle of domestication. Such insights could help modern plant breeders to buffer crops against global climate change.

Geneticists of both modern and ancient crops have poured tremendous effort into understanding maize, which was one of the most important subsistence crops in the New World thousands of years ago, and is a cornerstone of global agriculture today.

Maize originated in Mexico and rapidly spread into the lowlands of the southwest United States about 4,000 years ago. But communities at higher altitudes did not fully embrace the crop until 2,000 years later — a delay that has long puzzled archaeologists studying the region, says Kelly Swarts, a quantitative geneticist at the Max Planck Institute for Developmental Biology in Tübingen, Germany. “There was always the question: why wasn’t this catching on? Why weren’t people doing agriculture in the uplands?” she says.

Swarts and her colleagues turned to a site in a Utah cave called Turkey Pen Shelter, where a farming community lived about 2,000 years ago. Inhabitants of the cave raised turkeys, wove intricate baskets and shoes, and had the resources needed to store and process corn. Maize, which they probably served in soups and stews, comprised about 80% of their diet.

Complex crops

Swarts’s team sequenced the genomes of fifteen 1,900-year-old maize cobs found in the shelter and compared their sequences to those in a database of genomes and physical traits from some 2,600 modern maize lines. The researchers then used that information to extrapolate the physical characteristics of the Turkey Pen maize plants, including complex traits such as flowering time. The analysis revealed a crop that was shorter and more branched than modern varieties. “More like little bushes,” says Swarts, though the role of these traits is unclear. The crop also flowered more quickly than lowland varieties — an important adaptation to life in the highlands, which have a shorter growing season than lower elevations.

The analysis could open the way for similar studies of complex traits in other plants and animals, including humans, says Matthew Hufford, who studies evolutionary genomics in maize at Iowa State University in Ames. “We just now have the genetic tools and the analytic tools to make really good use of them.”

Plant evolutionary biologist Robin Allaby of the University of Warwick, UK looks forward to seeing the same approach applied to earlier stages of maize domestication. “That stuff was 1,900 years old, and a lot of the whistles and bangs had already happened,” he says. “It’s going to be really cool to see what a full 5,000-year-old maize phenotype looks like.”

A key finding from the study, says Hufford, was the realization that the genetic variants needed to adapt to highland life were already circulating in maize populations thousands of years ago “The diversity needed for high altitudes was there, but getting it in the right combination took 2,000 years,” he says.

And that diversity could be crucial for breeders as they try to adapt modern maize to a rapidly changing climate, says Swarts. “It’s really promising for maize’s future that it has so much standing variation — assuming we can conserve that diversity,” says Swarts. “If we needed to do this, it wouldn’t take 2,000 years. We could do it a lot faster now.”

Advertisements

Read Full Post »

These are preserved maize cobs from the El Gigante rockshelter, Honduras, directly dated by AMS 14C. The largest cob, pictured at middle, is roughly 10 cm (4 in) in length. The first four cobs from the left date to the Late Formative period (approximately 2,200 years BP), while the cob at the far right dates to the Late Archaic, nearly two millennia older (approximately 4,100 years BP). Research on specimens from El Gigante reveals that ancient farmers selected for numerous traits, developing and cultivating a wide array of maize

This is the El Gigante rockshelter in the western highlands of Honduras.

 

———————

Mid-summer corn on the cob is everywhere, but where did it all come from and how did it get to be the big, sweet, yellow ears we eat today? Some of the answers come from carbon dating ancient maize and other organic material from the El Gigante rock shelter in Honduras, according to a team of anthropologists who show that 4,300 years ago maize was sufficiently domesticated to serve as a staple crop in the Honduran highlands.

Source: Maize from El Gigante Rock Shelter shows early transition to staple crop

Read Full Post »

CAPTION
Carol Lang, University of York, examines the terrace systems of Engaruka.
CREDIT
University of York

Researchers at the University of York working on a 700-year-old abandoned agricultural site in Tanzania have shown that soil erosion benefited farming practices for some 500 years.

Source: ‘Lost city’ used 500 years of soil erosion to benefit crop farming

Read Full Post »

A large Byzantine-era wine press uncovered in the Negev region is only the second of its kind to be found

Source: 1,600 years ago, soldiers may have quaffed wine from this desert press

The wine press in Ramat Negev is intermeshed with a building, as seen above, summer 2017. (Davida Dagan, Israel Antiquities Authority)

Read Full Post »

Research by an international team, led by the University of Bristol, has shed new light on the fate of the ancient people of Rapa Nui (Easter Island).

Source: Diet of the ancient people of Rapa Nui shows adaptation and resilience not ‘ecocide’

Read Full Post »

CAPTION
This is a slice through image of horsegram seed.
CREDIT
Diamond Light Source

Original Article:

eurekalert.org

Scientists from UCL have used the UK’s synchrotron facility, Diamond Light Source, to document for the first time the rate of evolution of seed coat thinning, a major marker of crop domestication, from archaeological remains.

Source: Synchrotron light used to show human domestication of seeds from 2000 BC

Read Full Post »

20131225-103738.jpg

A global team of researchers has published the first-ever Wild Emmer wheat genome sequence in Science magazine. Wild Emmer wheat is the original form of nearly all the domesticated wheat in the world, including durum (pasta) and bread wheat. Wild emmer is too low-yielding to be of use to farmers today, but it contains many attractive characteristics that are being used by plant breeders to improve wheat.

Source: Wheat genome sequencing provides ‘time tunnel’ — boosting future food production & safety

Read Full Post »

Older Posts »

%d bloggers like this: