Feeds:
Posts
Comments

Posts Tagged ‘anthropology’

Two of my favorite things…Emmer and Haiku, how could I resist.

Minoan Linear A, Linear B, Knossos & Mycenae

Linear A haiku: the sea emmer wheat raindrops:Believe it or not, I was also able to compose a haiku in Linear A, which reads as follows,Linear A haiku tarasa kunisu raniNote that while the word for sea, tarasa, does not appear on any extant Linear A tablets or fragments, it does appear in the pre-Greek substratum, and may very well have existed in the Minoan vernacular. 

View original post

Advertisements

Read Full Post »

 

Original Article:

news.com.au

 

Religious dogma in the Middle Ages helped create the modern domestic chicken, research suggests.

Scientists found traits such as reduced aggression, faster egg-laying and an ability to live in close proximity to other birds emerged in chickens in about AD 1000.

Chicken evolution might have been strongly influenced by the impact of Christian beliefs on what people ate.

During the Middle Ages, religious edicts enforced fasting and the exclusion of four-legged animals from menus.

However, the consumption of chickens and eggs was permitted during fasts.

Increasing urbanisation might have helped drive the evolution of modern domesticated chickens, the study, published in the journal Molecular Biology and Evolution, said.

“Ancient DNA allows us to observe how genes have changed in the past, but the problem has always been to get high enough time resolution to link genetic evolution to potential causes,” Oxford University lead researcher Dr Liisa Loog said.

“But with enough data and a novel statistical framework, we now have timings that are precise enough to correlate them with ecological and cultural shifts.”

Chickens were domesticated from Asian jungle fowl around 6000 years ago.

But the new study, which combined DNA data from archaeological chicken bones with statistical modelling, showed some of the most important features of the present-day chicken arose in the high Middle Ages during a time of soaring demand for poultry.

They traced the evolutionary history of more than 70 chickens, looking for changes in the THSR gene that determines levels of aggression.

Natural selection favoured chickens with THSR variants that helped them cope with living close to one another, the study found.

THSR variants also led to faster egg laying and a reduced fear of humans.

A thousand years ago, just 40 per cent of the chickens studied had this gene, which is present in all modern domesticated chickens.

“We tend to think that there were wild animals and then there were domestic animals rather than thinking about the selection pressures on domestic plants and animals that varied through time,” Dr Loog said.

“This study shows how easy it is to turn a trait into something that becomes fixed in an animal in an evolutionary blink of an eye.”

Read Full Post »

Participants at the Slav and Viking Festival in Wolin, Poland tend to be sticklers for authenticity. Many adorn their bodies with tattoos, and some adopt a Viking diet, slaughtering and roasting game.  PHOTOGRAPH BY DAVID GUTTENFELDER, NATIONAL GEOGRAPHIC

Participants at the Slav and Viking Festival in Wolin, Poland tend to be sticklers for authenticity. Many adorn their bodies with tattoos, and some adopt a Viking diet, slaughtering and roasting game.
PHOTOGRAPH BY DAVID GUTTENFELDER, NATIONAL GEOGRAPHIC

Nationalgeographic.com

Historical interpreters bring a reconstructed longhouse to life at the Ribe Viking Center in Denmark. Meals were cooked over an open fire on a hearth, and Viking fare included salted herring, barley porridge, and boiled sheep heads.  PHOTOGRAPH BY DAVID GUTTENFELDER, NATIONAL GEOGRAPHIC

Historical interpreters bring a reconstructed longhouse to life at the Ribe Viking Center in Denmark. Meals were cooked over an open fire on a hearth, and Viking fare included salted herring, barley porridge, and boiled sheep heads.
PHOTOGRAPH BY DAVID GUTTENFELDER, NATIONAL GEOGRAPHIC

By Catherine Zuckerman

All that marauding must have left the Vikings famished. It’s easy to envision a group of them around a table, ravenous after a long day of ransacking, devouring giant hunks of meat and hoisting horns-full of ale.
But that wouldn’t quite be fair, or accurate.
As tempting as it is to assume that Viking meals were crude and carnivorous, the truth is that everyday Viking fare included a range of foods that a health-minded modern person would applaud.
Picture, for example, that burly, bearded warrior throwing down his sword to enjoy a tart treat similar to yogurt, or refuel with a tangle of fresh greens.
“The Vikings had a wide range of food and wild herbs available to make tasty and nutritious dishes,” says Diana Bertelsen, who helped research and develop recipes for Denmark’s Ribe Viking Center—a reconstructed Viking settlement where visitors can immerse themselves in just about every aspect of Viking culture, including what and how they ate.
“There are no original recipes from the Viking age available,” says Bertelsen, but “we know for certain what crops and animals were available a thousand years ago. Excavations reveal what the Vikings ate and what they imported, for instance peaches and cinnamon.”

Of course a specific Viking’s diet was heavily influenced by his or her location, says medieval scholar Eleanor Rosamund Barraclough. In cold, dry, coastal Scandinavia, for example, fish such as herring and salmon provided a key source of protein and were typically dried and preserved in salt.
This “stockfish,” as it’s called, “is a bit like beef jerky, only fishy,” says Barraclough. “It would have been a valuable food source on long sea journeys.”
Wealth also played a part in determining one’s diet, says Barraclough. “In Greenland, Vikings ate more seals, particularly on the poorer farms, while on the richer farms they ate more caribou.”
Seasons, too, dictated a Viking’s daily provisions. Depending on the time of year, meals might include a wide variety of berries, turnips, cabbage and other greens—including seaweed—barley-based porridge, and flat bread made from rye. Dishes were typically simple, but “we have no reason to believe that the food was bland and tasteless,” says Bertelsen.
Indeed, archaeological evidence suggests that Viking cooks were fond of flavor-enhancing ingredients like onions, garlic, coriander, and dill.
Vikings also prepared special food to celebrate seasonal events. “Boars were said to be sacrificed during the winter Yule celebration, and solemn oaths taken on their bristles,” says Barraclough.
Dairy would have made a frequent appearance in many a Viking diet. The seafaring warriors were farmers, after all, and skilled at animal husbandry. Cows and sheep did provide meat, but they also gave the Vikings a reliable supply of buttermilk, cheese, butter, and other products.
In Iceland, especially, Vikings enjoyed their dairy, and often ate it in the form of skyr, a fermented, yogurt-like cheese that today is sometimes marketed as a dairy “superfood.” Viking lore mentions the creamy substance, says Barraclough, who recalls a “saga where a man hides from his enemies in a vat of skyr—which comes very specifically up to his nipples.”
Like much about the Vikings, their eating habits remain a source of fascination—and inspiration—for many people. In fact, given the Vikings’ physical strength and surprisingly healthy diet, it makes sense to wonder: Could the “Viking Diet” be the next “Paleo?”

Read Full Post »

Fossil analysis suggests Neanderthals ate a diet of 80 percent meat. Photo by OrdinaryJoe/Shutterstock

Fossil analysis suggests Neanderthals ate a diet of 80 percent meat. Photo by OrdinaryJoe/Shutterstock

 

Original Article:

ups.com

By Brooks Hays, March 19, 2016

 

Researchers have long debated the precise diet of early humans, but the latest study is the first to nail down precise percentages.

 

Neanderthals were apparently too busy hunting and scavenging to pay much attention to Michael Pollan’s dietary advice: eat mostly plants.

New isotopic analysis suggests prehistoric humans ate mostly meat. As detailed in a new study published in the journal Quaternary International, the Neanderthal diet consisted of 80 percent meat, 20 percent vegetables.

Researchers in Germany measured isotope concentrations of collagen in Neanderthal fossils and compared them to the isotopic signatures of animal bones found nearby. In doing so, scientists were able to compare and contrast the diets of early humans and their mammalian neighbors, including mammoths, horses, reindeer, bison, hyenas, bears, lions and others.

“Previously, it was assumed that the Neanderthals utilized the same food sources as their animal neighbors,” lead researcher Herve Bocherens, a professor at the University of Tubingen’s Senckenberg Center for Human Evolution and Palaeoenvironment, said in a news release.

“However, our results show that all predators occupy a very specific niche, preferring smaller prey as a rule, such as reindeer, wild horses or steppe bison, while the Neanderthals primarily specialized on the large plant-eaters such as mammoths and woolly rhinoceroses,” Bocherens explained.

All of the Neanderthal and animal bones, dated between 45,000 and 40,000 years old, were collected from two excavation sites in Belgium.

Researchers have long debated the precise diet of early humans, but the latest study is the first to nail down precise percentages.

Bocherens and his colleagues are hopeful their research will shed light on the Neanderthals’ extinction some 40,000 years ago.

“We are accumulating more and more evidence that diet was not a decisive factor in why the Neanderthals had to make room for modern humans,” he said.

 

Read Full Post »

 

Stone Tools

Stone Tools

 

Original Article:

eurekaert.org

Harved University

Processing food before eating likely played key role in human evolution, study finds

 

How much time and effort do you spend chewing?

Although you probably enjoy a few leisurely meals every day, chances are that you spend very little time and muscular effort chewing your food. That kind of easy eating is very unusual. For perspective, our closest relatives, chimpanzees, spend almost half their day chewing, and with much greater force.

When and how did eating become so easy? And what were its consequences?

According to a new Harvard study, our ancestors between 2 and 3 million years ago started to spend far less time and effort chewing by adding meat to their diet and by using stone tools to process their food. The researchers estimate that such a diet would have saved early humans as many as 2.5 million chews per year, and made possible further changes that helped make us human. The study is described in a March 9 paper published in Nature.

One of the biggest puzzles in human evolution is how species such as Homo erectus evolved smaller teeth, smaller faces, and smaller guts, and yet managed to get more energy from food to pay for their bigger brains and bodies before cooking was invented. “What we showed is that…by processing food, especially meat, before eating it, humans not only decrease the effort needed to chew it, but also chew it much more effectively” said Katie Zink, the first author of the study, and a lecturer working in the lab of Daniel Lieberman, the Edwin M. Lerner II Professor of Biological Sciences.

By changing their diets to include just 33 percent meat, and processing their food – slicing meat and pounding vegetables – before eating, Zink and Lieberman found that the muscular effort required per chew and the number of chews required per day was reduced by almost 20 percent. They also found that by simply slicing meat with the sorts of simple tools available more than 2 million years ago, humans were able to swallow smaller, more easily digestible pieces than would have been possible without using tools.

“Eating meat and using stone tools to process food apparently made possible key reductions in the jaws, teeth and chewing muscles that occurred during human evolution,” Zink said.

But testing a process as basic as chewing isn’t as easy – or as attractive – as it might sound.

“What Katie did was creative but sometimes, frankly, a little stomach-churning,” Lieberman said. “Not only did she have people come into the lab, chew raw meat and other foods, and spit them out, but then she had to analyze the stuff.”

It wasn’t just any food – or any meat – that subjects noshed on.

To approximate the toughness and texture of the game that early humans ate, Zink and Lieberman (after much experimentation) settled on using goat – which subjects chewed raw while Zink used instruments attached to their jaw to measure the effort involved.

In each trial, volunteers were given, in random order, a selection of foods prepared in several ways – raw, sliced, pounded and cooked goat, as well as several vegetables, including carrots, beets and yams. After chewing each morsel until they would normally swallow, subjects spit out the food. Zink then spread the individual food particles out onto a tray, photographed them, and digitally measured their sizes.

“What we found was that humans cannot eat raw meat effectively with their low-crested teeth. When you give people raw goat, they chew and chew and chew, and most of the goat is still one big clump – it’s like chewing gum,” Lieberman said. “But once you start processing it mechanically, even just slicing it, the effects on chewing performance are dramatic.”

But why study chewing at all?

“Chewing is one of the key characteristics of being a mammal,” Lieberman explained. “Most other animals, like reptiles, barely chew their food — they just swallow it whole. The evolution of the ability to chew food into smaller particles gave mammals a big boost of extra energy because smaller particles have a higher surface area to volume ratio, allowing digestive enzymes to then break food down more efficiently.”

Most mammals, however, eat a relatively low-quality diet- think of cows eating grass and hay – that they need to spend most of the day chewing. Even humans’ closest ape relatives, with a diet that consists mainly of fruit, must spend nearly half their day chewing to extract enough energy from their food, Lieberman said.

“But we humans have done something really remarkable,” he said. “We eat even higher-quality foods than chimpanzees, and spend an order of magnitude less time chewing them.”

Making that change, however, presented early humans with a new challenge.

One of the critical components of that higher-quality diet is meat, which – despite being calorically dense – is very difficult for humans to chew effectively.

“Meat has a lot of nutrients, but it is also very elastic. You can think of it as being like a rubber band,” Zink said. “So the problem is that we can’t break it down with our flat, low-cusped teeth. But if you slice it up, then you do not need to use your teeth to break it down as much, and you swallow much smaller particles. Cooking makes chewing even easier.”

That pre-processing, and the reductions in chewing effort that came with it, Zink and Lieberman said, may have opened the door to one of the most important lifestyle changes in human evolution – the emergence of hunting and gathering.

“With the origin of the genus Homo…we went from having snouts and big teeth and large chewing muscles to having smaller teeth, smaller chewing muscles, and snoutless faces” Lieberman said. “Those changes, and others, allowed for selection for speech and other shifts in the head, like bigger brains. Underlying that, to some extent, is the simplest technology of all: slicing meat into smaller pieces, and pounding vegetables before you chew them.”

The impact that higher-quality diets and easier chewing could have on early humans is clear if you imagine what day-to-day life might have been like millions of years ago.

“Suppose you go out hunting for antelopes like impala or kudu, but at the end of the day you come back empty-handed, which happened fairly often for early humans,” Lieberman said. “Chimps couldn’t survive that way – they would then have to spend all night eating.

“Following the invention of hunting and gathering, though, humans can benefit from a division of labor,” he continued. “Someone else may have come back with an impala, or some tubers you could eat. And instead of spending all night eating it, you’d spend a lot less time, energy and effort to chew it by pounding it or cutting it with just a few stone stone tools. What a dramatic shift!”

Though many aspects of our biology changed when the genus Homo evolved, Zink and Lieberman said that processing food before eating almost surely played a significant role.

“One of the innovations that helped make us human is cutting up and pounding our food,” Lieberman said. “Extra-oral processing first by using stone tools and then by cooking played a very important role in human evolution because it released selection for big faces and big teeth, which then enabled selection for shorter faces which were important for speech, and enabled us to grow big brains and have large bodies. We are partly who we are because we chew less.”

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

 

Read Full Post »

Tiffiny Tung excavates at Beringa, Peru (Courtesy Tiffiny Tung)

Tiffiny Tung excavates at Beringa, Peru (Courtesy Tiffiny Tung)

Wari Ale gets its bright pink color from Peruvian molle berries and purple corn. (Courtesy of The Field Museum)

Wari Ale gets its bright pink color from Peruvian molle berries and purple corn. (Courtesy of The Field Museum)

 

Original Article:

news.vanderbilt.edu

by Liz Entman | Feb. 24,2016

After a long, dusty day excavating an archaeological site, nothing quite hits the spot like a frosty beverage. For Tiffiny Tung, associate professor of anthropology, all that hard work is about to pay off twice with the debut of a custom beer inspired by the fruits of her labor.

Wari Ale, a light, delicate beer whose rosy tint derives from bright pink molle berries and purple corn, will soon be available to connoisseurs over 21 at Chicago’s Field Museum and select Chicago retailers. The beer, crafted by Off Color Brewing, is based on a recipe treasured by an ancient Peruvian empire called the Wari and links to the museum’s permanent Ancient Americas exhibit.

“Archaeologists have known for a really long time that corn beer, or chicha, was socially important in the Andes,” said Tung. The Incas used it as a kind of political or social currency to build and solidify relationships with nearby lords.

But, while excavating a site called Beringa associated with the pre-Inca Wari culture, Tung found evidence that the Wari brewed their own version of chicha using the molle berry, the fruit of a local pepper plant.

Tung’s discovery was important, because 117 miles away at a site called Cerro Baúl, Ryan Williams, associate curator of anthropology at The Field Museum and a lead researcher of that excavation, had come upon the remains of a chicha de molle brewery, which he believes would have been able to produce 1,500–2,000 liters of beer in a single batch. Like Tung, Williams found evidence that, as corn beer did for the Incas, chicha de molle played a significant relationship-building role to the Wari.

“Tiffiny’s excavation at Beringa was key to understanding that Wari chicha de molle was a brewing phenomenon that went beyond our work at Cerro Baúl and was part of the larger Wari imperial project,” said Williams.

“It’s also really delicious,” said Tung.

The Field Museum first partnered with Off Color Brewing to produce a lager called Tooth and Claw brewed in honor of Sue, the museum’s Tyrannosaurus Rex skeleton. Williams hopes the museum will continue to be able to offer more beers inspired by the museum’s exhibits, collections and research in the future.

Media Inquiries:
Liz Entman, (615) 322-NEWS
Liz.entman@vanderbilt.edu

 

 

Read Full Post »

Original Article:

eurekalert.org

PUBLIC RELEASE: 8-FEB-2016

Amsterdam, February 8, 2016 – 200,000 fish bones discovered in and around a pit in Sweden suggest that the people living in the area more than 9000 years ago were more settled and cultured than we previously thought. Research published in the Journal of Archaeological Science suggests people were storing large amounts of fermented food much earlier than experts thought.

The new paper reveals the earliest evidence of fermentation in Scandinavia, from the Early Mesolithic time period, about 9,200 years ago. The author of the study, from Lund University in Sweden, say the findings suggest that people who survived by foraging for food were actually more advanced than assumed.

The Mesolithic period, which spanned around 10,000-5,000 BC, marked the time before people started farming in Europe. At this time, researchers previously believed groups of people in Scandinavia caught fish from the sea, lakes and rivers and moved around following the sources of food they could find.

“This is a really exciting and surprising finding that gives us a completely new picture of how the group lived,” said Adam Boethius, author of the study and historical osteology PhD student at Lund University in Sweden. “We’d never seen a site like this with so many well preserved fish bones, so it was amazing to find.”

For the first time, the new research suggests the foraging people actually settled much earlier than previously thought. They stored huge amounts of fish in one place by fermenting them, suggesting the people had more advanced technology and a more sedentary life than we thought.

If the people were more sedentary, they would have been better able to develop culture. This, say the authors, makes the culture more comparable to the Neolithic people in the Middle East, who were traditionally thought to have settled much earlier than their northern European counterparts.

Boethius and his colleagues had been excavating a site at Norje Sunnansund to rescue any artifacts from Mesolithic settlements before a road was built. As they started to dig, they found lots of fish bones, which indicated people had lived there. They then uncovered an elongated pit or gutter surrounded by small stake holes and completely filled with fish bones.

“It was really strange, and because of all the fish bones in the area we knew something was going on even before we found the feature,” said Boethius. “At first we had no idea what it was so we rescued it from the area to investigate.”

The excavation involved 16 archaeologists during five months. Boethius analyzed the feature and the contents and discovered the fish bones were from freshwater fish. He also showed the fish had been fermented – a skillful way of preserving food without using salt.

The amount of fish they found could have supported a large community of people. Given the amount and type of fish found at the site, Boethius believes freshwater sources played a more important role in the development of culture in the area than we thought. He is now working on further research to find out exactly what people were eating, and how this knowledge impacts our understanding of these ancient societies.

Follows in the next post is the first article from Sci-News.com

 

 

Read Full Post »

Older Posts »

%d bloggers like this: