Feeds:
Posts
Comments

Posts Tagged ‘Europe’

Note: some of the details in the photo below were hard to copy clearly due to the colors of the text. please zoom to get a better look.

jlp

 

Original article:

popular archaeology

BOYCE THOMPSON INSTITUTE—Centuries ago, the ancient networks of the Silk Road facilitated a political and economic openness between the nations of Eurasia. But this network also opened pathways for genetic exchange that shaped one of the world’s most popular fruits: the apple. As travelers journeyed east and west along the Silk Road, trading their goods and ideas, they brought with them hitchhiking apple seeds, discarded from the choicest fruit they pulled from wild trees. This early selection would eventually lead to the 7,500 varieties of apple that exist today.
Researchers at Boyce Thompson Institute (BTI) have been working hard to excavate the mysteries of the apple’s evolutionary history, and a new publication this week in Nature Communications reveals surprising insights into the genetic exchange that brought us today’s modern, domesticated apple, Malus domestica.
In collaboration with scientists from Cornell University and Shandong Agricultural University in China, the researchers sequenced and compared the genomes of 117 diverse apple accessions, including M. domestica and 23 wild species from North America, Europe, and East and central Asia.
A tale of two roads
The most exciting outcome of this genomic comparison is a comprehensive map of the apple’s evolutionary history. Previous studies have shown that the common apple, Malus domestica arose from the central Asian wild apple, Malus sieversii, with contributions from crabapples along the Silk Road as it was brought west to Europe.
With the results of this new study, the researchers could zoom in on the map for better resolution. “We narrowed down the origin of domesticated apple from very broad central Asia to Kazakhstan area west of Tian Shan Mountain,” explained Zhangjun Fei, BTI professor and lead author of this study.
In addition to pinpointing the western apple’s origin, the authors were excited to discover that the first domesticated apple had also traveled to the east, hybridizing with local wild apples along the way, yielding the ancestors of soft, dessert apples cultivated in China today.
“We pointed out two major evolutionary routes, west and east, along the Silk Road, revealing fruit quality changes in every step along the way,” summarized Fei.
Although wild M. sieversii grows east of Tian Shan Mountain, in the Xinjiang region of China, the ecotype there was never cultivated, and did not contribute to the eastern domesticated hybrid. Instead, it has remained isolated all these centuries, maintaining a pool of diversity yet untapped by human selection. First-author Yang Bai remarked, “it is a hidden jewel for apple breeders to explore further.”
The sour (but firm) side of the story
As the apple traveled west along the Silk Road in the hands of travelers, trees grew from dropped seeds and crossed with other wild apple varieties, including the incredibly sour European crabapple, Malus sylvestris. The sourness of crabapples was once described by Henry David Thoreau as, “sour enough to set a squirrel’s teeth on edge and make a jay scream.”
The authors found that M. sylvestris has contributed so extensively to the apple’s genome that the modern apple is actually more similar to the sour crabapple than to its Kazakhstani ancestor, M. sieversii.
“For the ancestral species, Malus sieversii, the fruits are generally much larger than other wild apples. They are also soft and have a very plain flavor that people don’t like much,” Bai remarked.
The hybridization between ancient cultivated apples and M. sylvestris, followed by extensive human selection, gave us new apples that are larger and fuller in flavor, and with a crispy firmness that gives them a longer shelf life.
Bai further explained, “The modern domesticated apples have higher and well-balanced sugar and organic acid contents. That is how the apple started to become a popular and favored fruit.”
A sizeable discovery with big potential
A new flavor and texture may have put the apple into our pies, but size matters a great deal too. In crop breeding, one of the most desirable traits selected for is a larger fruit or seed. In nearly all cases of fruit domestication, the wild ancestor has tiny fruit that were shaped into their large, nutritious cultivated counterpart through centuries of selection. For example, the domesticated tomato is at least 100 times larger than its wild relatives.
“This is not quite the case for apple. Its domestication started with a medium to large-sized fruit,” asserted Bai. “It has great potential for further enlarging fruit size in breeding programs.”
By comparing the many different apple genomes, the researchers were able to find evidence supporting two different evolutionary steps contributing to apple’s size increase – one before, and one after domestication.
The large size of Malus sieversii compared to other wild apples gave it a great advantage for domestication. It had already evolved to a suitable size before it was even cultivated, likely making it more attractive to growers who would then not need to spend much effort selecting for larger fruits.
Such a lack of size selection also means that the genes responsible for size increase still retain a variability that holds potential for future selection. But it can also make identification of the size-associated genes difficult. Despite this, the extensive breadth of the new study allowed the researchers to identify several genetic markers underlying the fruit size increases, which is great news for breeders who might want to further increase the apple’s girth.
The apple (genome) falls far from the tree
While consumers may ask for better apples, breeders are met with difficulty when it comes to polishing apple traits. One major issue is that apple can’t self-pollinate. It can only cross with other varieties, introducing too much genetic variability with each generation. While genetic change is necessary to tweak a trait of interest, too much change will tweak everything. Combined with the several years to get from apple seed to fruit, this makes breeding for desired traits a challenge.
“The genomic regions and candidate genes under human selection for a certain trait identified in this study will be very helpful and inspiring to breeders working on the same trait,” asserted Fei, who expects that the results from this study will, “improve speed and accuracy of ‘marker-assisted selection’ in apple.”
Now with an extensive and diverse collection of representative apple genomes, thorough and careful analyses have allowed Fei’s group to distinguish important genetic markers that will greatly aid breeders in their quest for better apples – be it for disease resistance, shelf-life, taste, or even size.
When asked how big she thinks an apple could get through breeding, Bai responded with a twinkle in her eye, “Well, in my wild imagination, maybe one day it can be as big as a watermelon.”

Advertisements

Read Full Post »

One of the ancient Viking cod bones used in the study. The bones, dating from between 800 to 1066 AD, were found on the site of the early medieval Baltic port of Haithabu. Credit: Dr.James Barrett

Original Article:

Popular-archaeology.com

 

UNIVERSITY OF CAMBRIDGE—Norway is famed for its cod. Catches from the Arctic stock that spawns each year off its northern coast are exported across Europe for staple dishes from British fish and chips to Spanish bacalao stew.
Now, a new study published today in the journal PNAS suggests that some form of this pan-European trade in Norwegian cod may have been taking place for 1,000 years.
Latest research from the universities of Cambridge and Oslo, and the Centre for Baltic and Scandinavian Archaeology in Schleswig, used ancient DNA extracted from the remnants of Viking-age fish suppers.
The study analysed five cod bones dating from between 800 and 1066 AD found in the mud of the former wharves of Haithabu, an early medieval trading port on the Baltic. Haithabu is now a heritage site in modern Germany, but at the time was ruled by the King of the Danes.
The DNA from these cod bones contained genetic signatures seen in the Arctic stock that swims off the coast of Lofoten: the northern archipelago still a centre for Norway’s fishing industry.
Researchers say the findings show that supplies of ‘stockfish’ – an ancient dried cod dish popular to this day – were transported over a thousand miles from northern Norway to the Baltic Sea during the Viking era.
Prior to the latest study, there was no archaeological or historical proof of a European stockfish trade before the 12th century.
While future work will look at further fish remains, the small size of the current study prevents researchers from determining whether the cod was transported for trade or simply used as sustenance for the voyage from Norway.
However, they say that the Haithabu bones provide the earliest evidence of fish caught in northern Norway being consumed on mainland Europe – suggesting a European fish trade involving significant distances has been in operation for a millennium.
“Traded fish was one of the first commodities to begin to knit the European continent together economically,” says Dr James Barrett, senior author of the study from the University of Cambridge’s McDonald Institute for Archaeological Research.
“Haithabu was an important trading centre during the early medieval period. A place where north met south, pagan met Christian, and those who used coin met those who used silver by weight.”
“By extracting and sequencing DNA from the leftover fish bones of ancient cargoes at Haithabu, we have been able to trace the source of their food right the way back to the cod populations that inhabit the Barents Sea, but come to spawn off Norway’s Lofoten coast every winter.
“This Arctic stock of cod is still highly prized – caught and exported across Europe today. Our findings suggest that distant requirements for this Arctic protein had already begun to influence the economy and ecology of Europe in the Viking age.”

Stockfish is white fish preserved by the unique climate of north Norway, where winter temperature hovers around freezing. Cod is traditionally hung out on wooden frames to allow the chill air to dry the fish. Some medieval accounts suggest stockfish was still edible as much as ten years after preservation.
The research team argue that the new findings offer some corroboration to the unique 9th century account of the voyages of Ohthere of Hålogaland: a Viking chieftain whose visit to the court of King Alfred in England resulted in some of his exploits being recorded.
“In the accounts inserted by Alfred’s scribes into the translation of an earlier 5th century text, Ohthere describes sailing from Hålogaland to Haithabu,” says Barrett. Hålogaland was the northernmost province of Norway.
“While no cargo of dried fish is mentioned, this may be because it was simply too mundane a detail,” says Barrett. “The fish-bone DNA evidence is consistent with the Ohthere text, showing that such voyages between northern Norway and mainland Europe were occurring.”
“The Viking world was complex and interconnected. This is a world where a chieftain from north Norway may have shared stockfish with Alfred the Great while a late-antique Latin text was being translated in the background. A world where the town dwellers of a cosmopolitan port in a Baltic fjord may have been provisioned from an Arctic sea hundreds of miles away.”
The sequencing of the ancient cod genomes was done at the University of Oslo, where researchers are studying the genetic makeup of Atlantic cod in an effort to unpick the anthropogenic impacts on these long-exploited fish populations.
“Fishing, particularly of cod, has been of central importance for the settlement of Norway for thousands of years. By combining fishing in winter with farming in summer, whole areas of northern Norway could be settled in a more reliable manner,” says the University of Oslo’s Bastiaan Star, first author of the new study.
Star points to the design of Norway’s new banknotes that prominently feature an image of cod, along with a Viking ship, as an example of the cultural importance still placed on the fish species in this part of Europe.
“We want to know what impact the intensive exploitation history covering millennia has inflicted on Atlantic cod, and we use ancient DNA methods to investigate this,” he says.
Article Source: University of Cambridge news release

 

 

Read Full Post »

Analysis of strontium isotopes in teeth from Neolithic cattle suggest that early Europeans used different specialized herding strategies, according to a study published July 26, 2017 in the open-access journal PLOS ONE by Claudia Gerling from University of Basel, Basel, Switzerland, and colleagues.

Source: Isotopes in prehistoric cattle teeth suggest herding strategies used during the Neolithic

Read Full Post »

photo: Iris

 

Original Article:

the local.dk

New research suggests the Vikings indulged in a bit of viticulture.

Studies of grape pips point to wine production in Denmark during the time of the Vikings.

The Vikings liked alcohol, but while it is easy enough to grow crops and produce beer in the Danish climate, wine is a different challenge and was thought to have always been imported from southern parts of Europe to northern countries.

But new research has showed that at least one of the two oldest grape cores found in Denmark was grown locally, reports science news site Videnskab.dk.

Results of the analysis could be the final piece of evidence needed to prove that wine was produced in Denmark during the Viking era, says the report.

“This is the first discovery and sign of wine production in Denmark, with all that that entails in terms of status and power. We do not know how [the grapes] were used – it may have been just to have a pretty bunch of grapes decorating a table, for example – but it is reasonable to believe that they made wine,” archaeological botanist and museum curator Peter Steen Henriksen of Denmark’s National Museum told Videnskab.dk.

 

Henriksen himself discovered the two centuries-old wine pips in a sample of earth at the site of a Viking settlement at Tissø. Analysis of the pips found one to date from the Viking era and the other from the Iron Age.

No evidence of grapes in Denmark prior to the Middle Ages was previously known.

Henriksen sent the pips to the National Museum, where they underwent strontium isotope tests similar to those that confirmed Danish preserved bodies the Skydstrup girl and the Egtved girl originated from geographical areas further south in Europe.

The tests showed that the Viking era grape was probably grown on Zealand, reports Videnskab.dk.

“Before we only had suspicions, but now we can see that they actually had grapes and therefore the resources to produce [wine] themselves. Suddenly it all becomes very real,” professor Karin Margarita Frei of the National Museum told Videnskab.dk.

The Tissø settlement is one of the richest Viking locations in Denmark and was home to a dynasty that stretched from the early Iron Age to the late Viking period, reports Videnskab.

Production of wine in the area may have been a way of expressing status, say researchers.

Although it is also possible that the grapes were grown to be consumed as fruit, the Vikings are known to have come across wine on their voyages abroad, and Roman wine cups and other remnants of wine have been found in Scandinavia. The climate in the region was also similar to the present-day climate, making it possible to grow grapes.

Read Full Post »

El Sidrón: Working in the Tunnel of Bones cave, where 12 Neandertal specimens dating around 49,000 years ago have been recovered. Image credit: Paleoanthropology Group MNCN-CSIC; Photo by Antonio Rosas)

 

El Sidrón upper jaw: a dental calculus deposit is visible on the rear molar (right) of this Neandertal. This individual was eating poplar, a source of aspirin, and had also consumed moulded vegetation including Penicillium fungus, source of a natural antibiotic. Image credit: Paleoanthropology Group MNCN-CSIC

 

Original Article:

popular-archaeology.com

Ancient DNA found in the dental plaque of Neanderthals – our nearest extinct relative – has provided remarkable new insights into their behaviour, diet and evolutionary history, including their use of plant-based medicine to treat pain and illness.

Published today in the journal Nature, an international team led by the University of Adelaide’s Australian Centre for Ancient DNA (ACAD) and Dental School, with the University of Liverpool in the UK, revealed the complexity of Neandertal behaviour, including dietary differences between Neanderthal groups and knowledge of medication.

“Dental plaque traps microorganisms that lived in the mouth and pathogens found in the respiratory and gastrointestinal tract, as well as bits of food stuck in the teeth – preserving the DNA for thousands of years,” says lead author Dr Laura Weyrich, ARC Discovery Early Career Research Fellow with ACAD.

“Genetic analysis of that DNA ‘locked-up’ in plaque, represents a unique window into Neandertal lifestyle – revealing new details of what they ate, what their health was like and how the environment impacted their behaviour.”

The international team analysed and compared dental plaque samples from four Neanderthals found at the cave sites of Spy in Belgium and El Sidrón in Spain. These four samples range from 42,000 to around 50,000 years old and are the oldest dental plaque ever to be genetically analysed.

“We found that the Neandertals from Spy Cave consumed woolly rhinoceros and European wild sheep, supplemented with wild mushrooms,” says Professor Alan Cooper, Director of ACAD. “Those from El Sidrón Cave on the other hand showed no evidence for meat consumption, but appeared instead to have a largely vegetarian diet, comprising pine nuts, moss, mushrooms and tree bark – showing quite different lifestyles between the two groups.”

“One of the most surprising finds, however, was in a Neanderthal from El Sidrón, who suffered from a dental abscess visible on the jawbone. The plaque showed that he also had an intestinal parasite that causes acute diarrhoea, so clearly he was quite sick. He was eating poplar, which contains the pain killer salicylic acid (the active ingredient of aspirin), and we could also detect a natural antibiotic mould (Penicillium) not seen in the other specimens.”

“Apparently, Neanderthals possessed a good knowledge of medicinal plants and their various anti-inflammatory and pain-relieving properties, and seem to be self-medicating. The use of antibiotics would be very surprising, as this is more than 40,000 years before we developed penicillin. Certainly our findings contrast markedly with the rather simplistic view of our ancient relatives in popular imagination.”

Neanderthals, ancient and modern humans also shared several disease-causing microbes, including the bacteria that cause dental caries and gum disease. The Neandertal plaque allowed reconstruction of the oldest microbial genome yet sequenced – Methanobrevibacter oralis, a commensal that can be associated with gum disease. Remarkably, the genome sequence suggests Neandertals and humans were swapping pathogens as recently as 180,000 years ago, long after the divergence of the two species.

The team also noted how rapidly the oral microbial community has altered in recent history. The composition of the oral bacterial population in Neanderthals and both ancient and modern humans correlated closely with the amount of meat in the diet, with the Spanish Neanderthals grouping with chimpanzees and our forager ancestors in Africa. In contrast, the Belgian Neanderthal bacteria were similar to early hunter gatherers, and quite close to modern humans and early farmers.

“Not only can we now access direct evidence of what our ancestors were eating, but differences in diet and lifestyle also seem to be reflected in the commensal bacteria that lived in the mouths of both Neanderthals and modern humans,” says Professor Keith Dobney, from the University of Liverpool.

“Major changes in what we eat have, however, significantly altered the balance of these microbial communities over thousands of years, which in turn continue to have fundamental consequences for our own health and well-being. This extraordinary window on the past is providing us with new ways to explore and understand our evolutionary history through the microorganisms that lived in us and with us.” 

Medicine at El Sidrón

While studies have shown that one of the El Sidrón individuals was a left-handed adult female, one other individual is considered the ‘Star of the Show’ by the project investigators. As previous studies have pointed out, this male individual appears to have used his mouth to sharpen the blades of stone tools (rather like a third hand), leading to chipping on the enamel and dentine on his upper teeth. Now, the study of his dental plaque has brought new and quite unique information to light.

“We have evidence that this Neanderthal was self-medicated. We have discovered that the plaque preserved in his teeth contains sequences of the pathogen Enterocytozoon bieneusi which causes gastrointestinal problems, including serious diarrhoea. Additionally, thanks to a hole in his jaw we know he had a dental abscess. Both health issues must have caused him intense pain”, Rosas points out.

What is more, this Neanderthal’s dental plaque contains traces of DNA from both the natural antibiotic fungus, penicillium, as well as from poplar, a tree whose bark, roots and leaves contain silicic acid, the active ingredient in well-known medications.

This is not the first nod in this direction, given that the researchers at El Sidrón had already taken part in a study which clearly showed that Neanderthals recognised the curative and nutritional properties of some plants, since they took camomile and yarrow, most probably to help digest heavy meals.

Exchange of microorganisms between Neanderthals and sapiens

The scientific investigators compared Neanderthal oral micro-biotic data with human samples from Palaeolithic hunter-gatherers, African nomads, the first Neolithic farmers as well as from present-day man.

“Micro-biotic information is key to learning about the host’s health. Neanderthals for example have fewer potentially pathogenic bacteria than we do. In today’s human population a link has been seen between oral micro-biotics and a spectrum of health issues such as cardiovascular problems, obesity, psoriasis, asthma, colitis and gastroesophageal reflux”, highlights CSIC researcher Carles Lalueza-Fox, who works at the Institute of Evolutionary Biology (a CSIC-University of Pompeu Fabra shared centre).

Furthermore, the dental plaque from the individuals at El Sidrón has also made it possible to retrieve the oldest complete microorganism genome: the ancient Methanobrevibacter oralis, which is now classified as a Neanderthal subspecies. The Neanderthal and modern human strains appear to have diverged between 112,000 and 143,000 years ago, after the two evolutionary lines split.

“Today we know that crossbreeding took place on two occasions between sapiens and those Neanderthals who later lived in the Siberian region, but not with those in Asturias. If there was micro-biotic transfer between the Asturias Neanderthals and sapiens, then perhaps a cross-line existed between them, although we are yet to identify that”, concludes Lalueza Fox.

The El Sidrón cave

The El Sidrón cave, situated in Piloña, in Asturias in northern Spain, has provided the finest Neanderthal collection in the Iberian Peninsula and is one of the most active archaeological dig sites in the world. Discovered in 1994, around 2,500 skeletal remains from at least 13 individuals of both sexes and of varying ages who lived there around 49,000 years ago have been recovered.

The multidisciplinary team which worked at El Sidrón consisted of palaeontologist Antonio Rosas from CSIC’s National Natural Science Museum, the geneticist, Carles Lalueza-Fox, from the CSIC / Institute of Evolutionary Biology’s Pompeu Fabra University mixed centre, and the archaeologist, Marco de la Rasilla, from the University of Oviedo in Asturias.

At El Sidrón, the team developed a pioneering protocol, known as ‘clean excavation’, which minimises the risk of contaminating the early DNA with that of modern-day human DNA from the researchers working on the cave excavation. This allowed both nuclear and mitochondrial DNA to be extracted from teeth and skeletal remains. (Spanish National Research Council)

_____________________________________

Article Sources: Edited and adapted from press releases of the University of Adelaide and the Spanish National Research Council.

Read Full Post »

Original article:

Thelocal.se

Diver Jerry Wilhelmsson was out looking for a different shipwreck altogether off the south coast of the Åland islands (Finland’s autonomous Swedish-speaking islands between Stockholm and Helsinki) when he came across an incredible discovery. Sitting in front of him at a shallow depth was an unusually well-preserved 27 metre long shipwreck, complete with anchor, figurehead and hundreds of unopened bottles.

Wilhelmsson and his diving team Baltic Underwater Explorers now have permission to take some of the bottles back up to the surface in the hope that analysis will provide an explanation for where the mysterious wreck came from.

“It’s quite rare to find a wreck in this condition with cargo intact at a relatively shallow depth,” Magnus Melin of Baltic Underwater Explorers told The Local.

“The coolest thing must be the cargo hold with all the bottles. But the whole relatively small wreck, which has a figurehead, is very interesting. To me, the ship itself and its (currently unknown) story are the most interesting things.”

READ ALSO: Why Sweden’s famous Vasa shipwreck is getting a makeover

Speaking to Swedish tabloid Aftonbladet, marine archaeologist Marcus Lindholm speculated that the ship’s style suggests it dates from between 1850 and 1870.

But a better way to know for certain is to analyze the contents of some of the hundreds of bottles still sitting unopened in cargo boxes on the wreck.

“We have contact with the local authorities and they’ll come up with a plan on how to continue. Initially some of the bottles will be salvaged to analyze their content,” diver Melin explained.

“We don’t know at the moment what will happen after that, but more non-destructive documentation will be done to identify the wreck.”

Story continues below…

The waters in and around Sweden’s Baltic coast are something of a hotbed for shipwreck finds.

In April, two shipwrecks dating back to at least the 1600s were found in central Stockholm next to the island of Skeppsholmen, once again by chance when divers were examining the seabed before a boating race.

And on a smellier note, in July Swedish scientists discovered what they believe to be 340-year-old cheese on board the wreck of the royal ship Kronan in the waters near Baltic island Öland.

d3b5c8458c08654f6c88ea61e9ed8207b339bc237a5b3546460e090b227b0dad 1478094277_masthead

The ship’s figurehead. Photo: Jerry Wilhelmsson

 

 

 

Read Full Post »

cheese_1

Original Article:

qz.com

Alpine cheeses may have been one of our obsessions for over 3,000 years.

A paper published in PLoS on April 21 from researchers at Newcastle University and the University of York in England outlines some of the first evidence that humans living in the Swiss Alps around 1000 BC were able to produce cheeses.

Researchers examined 30 recovered fragments of pots from six different sites among the European mountains. A chemical analysis revealed that the pots had residues of compounds produced when milk from animals is heated, which is an important part of the cheese-making process.

Even though cheese-making had been documented earlier at lower altitudes, making cheese in the mountains was an impressive feat for our ancestors. “Prehistoric herders would have had to have detailed knowledge of the location of alpine pastures, be able to cope with unpredictable weather and have the technological knowledge to transform milk into a nutritious and storable product,” Francesco Carrer, an archeologist at Newcastle University and lead author of the paper, said in a press release. “Even today, producing cheese in a high mountainous environment requires extraordinary effort.”

Why make cheese? When produced during the summer months and stored, it may have provided a high-protein food source for mountain residents during the winter. As the climate shifted and left less land for crops and livestock, cheese may have also served as a less land-intensive food to produce.

Cheese may have also been an ancient form of bling. “The consumption of dairy products and meat were also integral elements in feasting,” the researchers write. They hypothesize that as social class became an increasingly hierarchical, owning and eating products that were more difficult to make demonstrated affluence.

 

 

Read Full Post »

Older Posts »

%d bloggers like this: