Feeds:
Posts
Comments

Posts Tagged ‘wild yeast’

Topic: Brewing Beer in ancient Greenland

Archaeologists from the Danish national museum have finally succeeded in  confirming that Erik the Red and his people could indeed brew beer in Greenland  when they lived there.

There has long been a question mark over whether or not the southern  Greenlandic climate was warm enough in Viking times to grow grain for beer,  mead, gruel and bread.

Now Danish archaeologists have found remains of burnt barley in a dunghill  from the time when Erik the Red and other Icelanders moved to Greenland. The  find is the first evidence of corn cultivation in southern Greenland a thousand  years ago.

According to Jyllandsposten, the archaeologists are very proud of their find  and are even shipping 300 kilogrammes of the dunghill home to Denmark for  further research.

Original article:

icenews.is

Jan28, 2012

Read Full Post »

Beer Brewing Supplies and Ingredients

Image by billread via Flickr

Topic: Home brewing ancient beer

Fast upon Mondays high response to my post( 589 hits my highest one day total so far), my husband ( the archaeologist) found the following article on BrewingTechniques.com.

I thought you might find it of interest.

My only objection lies in the postscript where the author describes setting out the sprouted barley gruel out in the open air-that might have worked just fine in ancient times but with the environment we have today it’s no wonder he found mold, weevils in his mash. If you try this use cheese cloth over your mix and it should elevate much of your problems. Also you can leave you mixture indoors wild yeast are everywhere. While leaving your mixture indoors probably isn’t what the ancients did, we will never know, they also didn’t have out pollution. I have had excellent results capturing wild yeasts with this method both for my sourdough bread and my wild yeast mead.

Intrigued by Anchor Brewing’s reproduction of an ancient beer according to the Sumarian Hymn to Ninkasi, one home brewer set out to reproduce his own interpretation of an even earlier beer.

As both a paleontologist and home brewer, I could not help but be attracted by the media coverage of the reproduction of an ancient Sumarian beer. The beer, called Ninkasi after the Sumarian goddess of beer, was produced by the Anchor Brewing Company (San Francisco, California), based on a hymn inscribed on a clay tablet (1). Dr. Solomon Katz of the University of Pennsylvania and Fritz Maytag of Anchor Brewing worked to decipher the brewing clues contained within the hymn to reproduce the beverage so revered by the ancient Sumarians.

Apart from the sense of accomplishment in reproducing a piece of the ancient past, Katz and Maytag’s work also added new information to an old debate. Anthropologists have long argued over whether beer or bread was the primary reason for the origins of agriculture (2,3). Katz and Maytag proceeded on the premise that an understanding of beer production methods of 4000 years ago could be used as a stepping stone from which to view the origins and evolution of beer. This, in turn, would provide a glimpse into the lives and cultures of the first nomadic tribes to settle into agrarian civilizations.

I decided to borrow their stepping stone and have a look into the past for myself. We know barley has been cultivated for at least 9000 years (4). I wondered what a beer of that era would have been like, a beer that is more than twice as old as the recipe reproduced from the Sumarian hymn. I decided to try some simple qualitative experiments in my kitchen. I managed not only to produce a beer that could have been made over 9000 years ago, but also to explore the intimate link between beer and bread. These experiments led me to the conclusion that the argument over the primacy of bread vs. beer is as academic as that of the chicken vs. egg.
THE DEVELOPMENT OF A PRIMARY INGREDIENT

To set the stage for the origins of beer, consider the other uses of grain. Undoubtedly the first use of grain, before either bread or beer, was to make gruel (2). Bread is effectively a cooked dense gruel and comes in three basic types. Unleavened bread, such as the tortilla, is the simplest form. It requires pulverized grain (flour) and water and is baked on a hot stone. It has a small volume and requires little in terms of ingredients. Leavened bread, with which we are most familiar, requires a large volume of flour, water, a source of sugars, and yeast. A third and less well known, bread is made from sprouted grains. The grains are sprouted, ground to paste, and baked in a loaf. The resultant loaf is very dense, sweet and cakelike, and is in effect a kilned malt.
One could argue endlessly on the basis of parsimony, culture, and archaeological evidence over the order of appearance of breads and beer. Whether sprouted bread was a derivative of sprouted gruel or unleavened bread may never be known. What we can be certain of is that people 10,000 years ago experimented with ways to consume grain. Somewhere in these experiments they discovered beer.

The question of how beer was discovered becomes academic. Beer may have been discovered through stewing sprouted bread, heating sprouted gruel, or unintentionally cooking grains that were stored in a damp place. Fermentation was most likely due to airborne microorganisms but may have been aided by the addition of fruit, raw grains, or other ingredients bearing surface yeast and bacteria. The serendipitous “accident” of making beer probably happened not once, but several times before the right blend of microorganisms produced a palatable beverage. I have no doubt, however, that once a pleasant tasting broth with euphoric effects was produced, word traveled fast.

ANCIENT BREWING TECHNIQUES

How was the beer made and what was it like? This question can be broken down into an examination of technology, ingredients, and procedures. The technology at the time of the origin of beer was not well developed but sufficient to make fire, tools of wood and stone, and a container of some sort. These are all it takes to make beer.
The main ingredient in beer is malt, which is a sprouted grain. Many grains can be and are used, including millet, corn, rice, wheat, spelt, and barley. We know from archaeological records that barley and wheat have been cultivated for at least 9000 years (4). Barley makes a poor bread because of its low gluten content, so we may safely assume that if people were brewing, they likely used barley and may have used wheat and other grains as well. The malt may have taken any of a number of forms. Dry malt may have been made for storage by either drying the sprouted grains in the sun, or baking sprouted loaves until hard. The very earliest beers may well have been made from raw sprouted grains that had undergone no drying or kilning.

The process for making the original beers was undoubtedly abbreviated compared with modern beers, which undergo separate mashing, boiling, and fermentation steps. The first beers likely underwent a continuous mash and fermentation. Sprouted grains were ground and mixed with water in a vessel of wood or even in skin bags. This vessel was heated either by fire, by dropping in heated rocks, or by setting it out in the hot sun. Fermenting flora would have been introduced from both the grains and the air. The fermented gruel could then be consumed, or the liquid could be drawn off as beer and the remaining grains and yeast mixed with wheat flour to make a leavened bread.

The fermentation of ancient beers would have involved many different yeasts and bacteria. The trick would have been to keep the pH down low enough to inhibit noxious bacteria. A “sour mash” process, in which the warm mash is inoculated with Lactobacillus from the grain husks, can grow some truly foul aerobic organisms if exposed to air. Presumably the “sour mash” portion of the fermentation was brief, or some acidity was built up during the sprouting process.

With the invention of ceramics, the process could be much more refined. The mash could be cooked over a fire, and the liquid could be drawn off and fermented separately. Eventually, techniques would have evolved to preferentially select certain strains of microflora by the addition of fruit, which bear yeast on the surface, or by using a “magic stick” to stir the wort and transmit yeasts between batches.

ANCIENT BEER, HOME BREWED IN MY KITCHEN

To experience part of the ancient past, I wanted to reproduce an early beer. I decided to start with beer that could have been made with a mash cooked in clay pots. The idea was to sprout grains of barley and wheat, use some of the sprouted grains to make sprouted loaves, cook up a mash of sprouted grains and sprouted bread, and transfer the liquid and ferment it. To round out the experiment, I decided to collect the yeast sediment and any grains from the bottom of the fermentor and mix these with stone-ground whole wheat flour to make leavened bread.
Ingredients: I picked up the grains from a health food store. In addition to barley, I decided to include wheat and spelt for variety. Unfortunately, the barley was hulled. I knew the hulled barley could lead to problems but decided to take my chances for this first attempt.

To make the malt, I sprouted the grains in mason jars with perforated lids (these can be purchased at a health food store or made at home). I placed 200-250 g of grain in each 1-L jar and filled the jars with cold water, rotating them to ensure even wetting. I left the grains to soak in water for 24 h; I then inverted the jars and left them on a dish rack to drain. I rinsed the grains every 12 h and again left them to drain. After every rinsing I examined the grains for signs of germination. Germination was uneven, so the termination point was somewhat arbitrary; I stopped the sprouting when many of the acrospires had reached grain length and not too many had grown much longer. The wheat and spelt grains were ready in two to three days, whereas the barley took seven or more days to sprout sufficiently. By the time the barley was ready for use, the moist grains emitted a vinegary aroma, perhaps from the activity of bacteria in the grain bed.

I gave the grains a final rinse, drained them, and dumped those destined to become sprouted bread into a food processor for grinding (I could not find a mortar and pestle large enough). I emptied the resulting thick starchy paste of whole and partial grains onto a flat ceramic baking pan and formed it into “biscuits,” 15-18 cm in diameter and 2-3 cm thick. These biscuits were then baked at various temperatures and times to observe the different results. I opted for flat biscuits rather than domed loaves because the flat shape would dry more thoroughly for better storage; the dome-shaped store-bought sprouted bread must be kept frozen to prevent mold from growing on the moist, sweet loaf.

I baked the biscuits at 120-175 °F (50-80 °C) for 8-18 h. Those baked at 150 °F (65 °C) for about 10 h seemed to be the most pleasant tasting. Those baked at lower temperatures (120 °F [50 °C]) remained sticky and pasty even after 12 h and required flipping and a further 6 h of baking. Those baked in a stepwise manner (130 °F [55 °C] for 1 h, 150-160 °F [65-70 °C] for 2 h, and 175 °F [80 °C] for 8 h) came out darkened to the color of dark Munich malt or British brown (porter) malt, depending on the original moisture content. The flavor of the wheat and spelt biscuits was better than that of the barley biscuits, though they all tasted of malt.

Recipe design: With biscuits and sprouting barleycorns, I set about trying to design a recipe that could be produced by people of 10,000 years ago and that could be reproduced easily and reliably. Ancient cultures undoubtedly experimented until they achieved desirable results. I chose not to reproduce all of these experiments, but rather to shortcut that process by calling on more modern knowledge of brewing science. I had to remind myself, though, that the experiment was to reproduce a fermented beverage of the ancients, and not to brew a competition beer from which I expected perfect extraction or crystal clarity.

Mashing: The mashing technique I finally settled on was a sort of decoction. The technique has the advantage of producing the desired temperatures without actually having to measure those temperatures with a thermometer. A half and half mixture of boiling mash and room temperature mash would give a temperature of approximately 140 °F (60 °C). If this resulting mash were slowly heated, it would pass through the starch conversion temperature range, through mash-out temperatures, and on to boiling. The extracted wort would be boiled, cooled slowly, and fermented.

Fermentation: Fermentation was another dilemma. I was not about to expose this wort to the microorganisms in my kitchen, which have been responsible for more than one spoiled batch of beer. And I did not wish to use commercially available lambic cultures, because I was not producing a lambic-style beer. Some have suggested that ancient beers were fermented with a combination of Saccharomyces and Schizosaccharomyces (5), but I had no local source of the latter. Instead, I recalled a portion of Katz and Maytag’s interpretation of the Hymn to Ninkasi wherein they supposed that fruits, such as grapes (or raisins) or dates, may have been added, not as a flavoring but as a source of wild yeasts which normally live on the skins of these fruits (1).

I decided against using grapes to supply the yeast because fresh fruit is not readily available in Halifax in late fall. What is available has been shipped long distances and likely contains both pesticides and fruit fly eggs. I could have used a mix of pure wine and beer cultures to simulate wild yeasts, but instead I chose to culture the yeast from a batch of fresh unpasteurized sweet apple cider. This technique provided an inoculation with microorganisms known to produce fermentation without actually controlling the numbers or strains of those organisms. The beer was intended to be consumed young, so I was not overly concerned about spoilage or long-term storage. The recipe and procedure I settled on is shown in the accompanying box.

For those interested in specific numbers, the original gravity was 1.071 (much of it from dissolved starches). The final gravity was quite high as well – 1.033. As it fermented, the starch in suspension formed a pellicle on top of the kraeusen. As the foam fell, the starchy skin remained; its integrity was such that bubbles would collect underneath it, bursting only when they had grown to several centimeters in width. Much of the brown color of the liquid settled with the yeast as a starchy sediment as fermentation slowed, leaving a surprisingly pale liquor.

FINISHED BEER AND LEAVENED BREAD

After racking the beer into bottles, I performed the other half of the experiment. I removed a quantity (roughly 500 mL) of the yeast-starch-grain slurry from the bottom of the primary, warmed it slightly to rouse the yeast, and added stone-ground whole wheat flour to make a dough (about 1.5 L [6 cups]). After the dough was thoroughly mixed to a dense elastic texture, I left it to rise for 1 h in a warm place over the oven. I kneaded it, rolled it into a ball, placed it on a ceramic baking pan, and baked it at 350 °F (175 °C) for 55 min. The resulting loaf was dark and heavy and initially had a strong aroma of alcohol. The bread was hearty, though slightly bland from lack of sugar, oil, and salt. It was not unpleasant, and though not the best choice for a peanut butter sandwich, it would make an excellent vehicle for a ripe brie.
The beer was more of a surprise. My expectation was of a sour, yeasty, starchy brew, drinkable but not particularly enjoyable. Not so. The beer was quite pale and contained suspended starch, giving it the appearance of a Belgian White beer, though a degree or two darker. The level of carbonation was almost nil, though when poured with vigor a slight sparkling could be produced. Without carbonation it produced no head, so head retention was not an issue. The aroma was bready, yeasty, and cidery, with a hint of wheat. The cidery component was not like that of a beer made with too much sucrose, nor was it the acetaldehyde tang of a certain commercial American pilsner. The perception of yeastiness in the aroma faded after the first few sips. The flavor was soft and had a dry finish. No strong estery or phenolic notes were present, but a slight spiciness was detectable in the background. The high wheat content provided a bready character and may have contributed to the spicy note. The alcohol was noticeable, but not foremost. Despite the high original gravity, the beer was remarkably clean tasting. One taster compared it to Jade, a pale Flanders-style ale from the north of France, though I have never sampled this particular beer. It was good enough to warrant a second glass.

From this simple experiment we get a glimpse into the origins of beer and leavened bread. What was wholly unexpected in my results was that ancient beers may have been quite good, even by modern standards. The vagaries of wild fermentation would have precluded any form of quality control, and yet spontaneous fermentation with wild yeasts likely produced a pleasant end product often enough to keep the ancient brewers at their craft.

POSTSCRIPT

As a postscript to this experiment, buoyed by the success of my first attempt I decided to take one step further back: I wanted to reproduce the oldest beer. For this I would sprout barley in water, pound it into gruel, set it in the sun to mash, leave it open to the night air for inoculation, and see what happened. With any luck the sprouting grain and mash would be acidic enough to keep some of the bacteria at bay, and with even more luck I might pick up some interesting and inoffensive wild yeasts.
This idea, however, was misguided. I soaked whole feed barley in water, hoping that mold could be kept away by keeping the water level above the level of the grain. Within 36 h the concoction was churning and bubbling and dead weevils floated on the surface. After another 24 h, white mold was growing on the surface, and bacterial and yeast activity in the grain continued at a furious pace. I decided to discontinue the experiment. Between the putrid aroma and the fear of toxic molds, I decided perhaps I didn’t want to taste this beer after all.

This test was not a complete waste, however. Though it should perhaps be repeated in a warmer climate, it indicated that the earliest beer was not likely produced by the simple accident of grain being soaked by rainwater. The earliest beers likely did not appear until some process for mashing or malting was developed, either in the form of a gruel or a sprouted bread.
Kitchen Anthropology:
Home Brewing an Ancient Beer
By Ed Hitchcock
Republished from BrewingTechniques’ September/October 1994.
Intrigued by Anchor Brewing’s reproduction of an ancient beer according to the Sumarian Hymn to Ninkasi, one home brewer set out to reproduce his own interpretation of an even earlier beer.

As both a paleontologist and home brewer, I could not help but be attracted by the media coverage of the reproduction of an ancient Sumarian beer. The beer, called Ninkasi after the Sumarian goddess of beer, was produced by the Anchor Brewing Company (San Francisco, California), based on a hymn inscribed on a clay tablet (1). Dr. Solomon Katz of the University of Pennsylvania and Fritz Maytag of Anchor Brewing worked to decipher the brewing clues contained within the hymn to reproduce the beverage so revered by the ancient Sumarians.

Apart from the sense of accomplishment in reproducing a piece of the ancient past, Katz and Maytag’s work also added new information to an old debate. Anthropologists have long argued over whether beer or bread was the primary reason for the origins of agriculture (2,3). Katz and Maytag proceeded on the premise that an understanding of beer production methods of 4000 years ago could be used as a stepping stone from which to view the origins and evolution of beer. This, in turn, would provide a glimpse into the lives and cultures of the first nomadic tribes to settle into agrarian civilizations.

I decided to borrow their stepping stone and have a look into the past for myself. We know barley has been cultivated for at least 9000 years (4). I wondered what a beer of that era would have been like, a beer that is more than twice as old as the recipe reproduced from the Sumarian hymn. I decided to try some simple qualitative experiments in my kitchen. I managed not only to produce a beer that could have been made over 9000 years ago, but also to explore the intimate link between beer and bread. These experiments led me to the conclusion that the argument over the primacy of bread vs. beer is as academic as that of the chicken vs. egg.

THE DEVELOPMENT OF A PRIMARY INGREDIENT

To set the stage for the origins of beer, consider the other uses of grain. Undoubtedly the first use of grain, before either bread or beer, was to make gruel (2). Bread is effectively a cooked dense gruel and comes in three basic types. Unleavened bread, such as the tortilla, is the simplest form. It requires pulverized grain (flour) and water and is baked on a hot stone. It has a small volume and requires little in terms of ingredients. Leavened bread, with which we are most familiar, requires a large volume of flour, water, a source of sugars, and yeast. A third and less well known, bread is made from sprouted grains. The grains are sprouted, ground to paste, and baked in a loaf. The resultant loaf is very dense, sweet and cakelike, and is in effect a kilned malt.
One could argue endlessly on the basis of parsimony, culture, and archaeological evidence over the order of appearance of breads and beer. Whether sprouted bread was a derivative of sprouted gruel or unleavened bread may never be known. What we can be certain of is that people 10,000 years ago experimented with ways to consume grain. Somewhere in these experiments they discovered beer.

The question of how beer was discovered becomes academic. Beer may have been discovered through stewing sprouted bread, heating sprouted gruel, or unintentionally cooking grains that were stored in a damp place. Fermentation was most likely due to airborne microorganisms but may have been aided by the addition of fruit, raw grains, or other ingredients bearing surface yeast and bacteria. The serendipitous “accident” of making beer probably happened not once, but several times before the right blend of microorganisms produced a palatable beverage. I have no doubt, however, that once a pleasant tasting broth with euphoric effects was produced, word traveled fast.

ANCIENT BREWING TECHNIQUES

How was the beer made and what was it like? This question can be broken down into an examination of technology, ingredients, and procedures. The technology at the time of the origin of beer was not well developed but sufficient to make fire, tools of wood and stone, and a container of some sort. These are all it takes to make beer.
The main ingredient in beer is malt, which is a sprouted grain. Many grains can be and are used, including millet, corn, rice, wheat, spelt, and barley. We know from archaeological records that barley and wheat have been cultivated for at least 9000 years (4). Barley makes a poor bread because of its low gluten content, so we may safely assume that if people were brewing, they likely used barley and may have used wheat and other grains as well. The malt may have taken any of a number of forms. Dry malt may have been made for storage by either drying the sprouted grains in the sun, or baking sprouted loaves until hard. The very earliest beers may well have been made from raw sprouted grains that had undergone no drying or kilning.

The process for making the original beers was undoubtedly abbreviated compared with modern beers, which undergo separate mashing, boiling, and fermentation steps. The first beers likely underwent a continuous mash and fermentation. Sprouted grains were ground and mixed with water in a vessel of wood or even in skin bags. This vessel was heated either by fire, by dropping in heated rocks, or by setting it out in the hot sun. Fermenting flora would have been introduced from both the grains and the air. The fermented gruel could then be consumed, or the liquid could be drawn off as beer and the remaining grains and yeast mixed with wheat flour to make a leavened bread.

The fermentation of ancient beers would have involved many different yeasts and bacteria. The trick would have been to keep the pH down low enough to inhibit noxious bacteria. A “sour mash” process, in which the warm mash is inoculated with Lactobacillus from the grain husks, can grow some truly foul aerobic organisms if exposed to air. Presumably the “sour mash” portion of the fermentation was brief, or some acidity was built up during the sprouting process.

With the invention of ceramics, the process could be much more refined. The mash could be cooked over a fire, and the liquid could be drawn off and fermented separately. Eventually, techniques would have evolved to preferentially select certain strains of microflora by the addition of fruit, which bear yeast on the surface, or by using a “magic stick” to stir the wort and transmit yeasts between batches.

ANCIENT BEER, HOME BREWED IN MY KITCHEN

To experience part of the ancient past, I wanted to reproduce an early beer. I decided to start with beer that could have been made with a mash cooked in clay pots. The idea was to sprout grains of barley and wheat, use some of the sprouted grains to make sprouted loaves, cook up a mash of sprouted grains and sprouted bread, and transfer the liquid and ferment it. To round out the experiment, I decided to collect the yeast sediment and any grains from the bottom of the fermentor and mix these with stone-ground whole wheat flour to make leavened bread.
Ingredients: I picked up the grains from a health food store. In addition to barley, I decided to include wheat and spelt for variety. Unfortunately, the barley was hulled. I knew the hulled barley could lead to problems but decided to take my chances for this first attempt.

To make the malt, I sprouted the grains in mason jars with perforated lids (these can be purchased at a health food store or made at home). I placed 200-250 g of grain in each 1-L jar and filled the jars with cold water, rotating them to ensure even wetting. I left the grains to soak in water for 24 h; I then inverted the jars and left them on a dish rack to drain. I rinsed the grains every 12 h and again left them to drain. After every rinsing I examined the grains for signs of germination. Germination was uneven, so the termination point was somewhat arbitrary; I stopped the sprouting when many of the acrospires had reached grain length and not too many had grown much longer. The wheat and spelt grains were ready in two to three days, whereas the barley took seven or more days to sprout sufficiently. By the time the barley was ready for use, the moist grains emitted a vinegary aroma, perhaps from the activity of bacteria in the grain bed.

I gave the grains a final rinse, drained them, and dumped those destined to become sprouted bread into a food processor for grinding (I could not find a mortar and pestle large enough). I emptied the resulting thick starchy paste of whole and partial grains onto a flat ceramic baking pan and formed it into “biscuits,” 15-18 cm in diameter and 2-3 cm thick. These biscuits were then baked at various temperatures and times to observe the different results. I opted for flat biscuits rather than domed loaves because the flat shape would dry more thoroughly for better storage; the dome-shaped store-bought sprouted bread must be kept frozen to prevent mold from growing on the moist, sweet loaf.

I baked the biscuits at 120-175 °F (50-80 °C) for 8-18 h. Those baked at 150 °F (65 °C) for about 10 h seemed to be the most pleasant tasting. Those baked at lower temperatures (120 °F [50 °C]) remained sticky and pasty even after 12 h and required flipping and a further 6 h of baking. Those baked in a stepwise manner (130 °F [55 °C] for 1 h, 150-160 °F [65-70 °C] for 2 h, and 175 °F [80 °C] for 8 h) came out darkened to the color of dark Munich malt or British brown (porter) malt, depending on the original moisture content. The flavor of the wheat and spelt biscuits was better than that of the barley biscuits, though they all tasted of malt.

Recipe design: With biscuits and sprouting barleycorns, I set about trying to design a recipe that could be produced by people of 10,000 years ago and that could be reproduced easily and reliably. Ancient cultures undoubtedly experimented until they achieved desirable results. I chose not to reproduce all of these experiments, but rather to shortcut that process by calling on more modern knowledge of brewing science. I had to remind myself, though, that the experiment was to reproduce a fermented beverage of the ancients, and not to brew a competition beer from which I expected perfect extraction or crystal clarity.

Mashing: The mashing technique I finally settled on was a sort of decoction. The technique has the advantage of producing the desired temperatures without actually having to measure those temperatures with a thermometer. A half and half mixture of boiling mash and room temperature mash would give a temperature of approximately 140 °F (60 °C). If this resulting mash were slowly heated, it would pass through the starch conversion temperature range, through mash-out temperatures, and on to boiling. The extracted wort would be boiled, cooled slowly, and fermented.

Fermentation: Fermentation was another dilemma. I was not about to expose this wort to the microorganisms in my kitchen, which have been responsible for more than one spoiled batch of beer. And I did not wish to use commercially available lambic cultures, because I was not producing a lambic-style beer. Some have suggested that ancient beers were fermented with a combination of Saccharomyces and Schizosaccharomyces (5), but I had no local source of the latter. Instead, I recalled a portion of Katz and Maytag’s interpretation of the Hymn to Ninkasi wherein they supposed that fruits, such as grapes (or raisins) or dates, may have been added, not as a flavoring but as a source of wild yeasts which normally live on the skins of these fruits (1).

I decided against using grapes to supply the yeast because fresh fruit is not readily available in Halifax in late fall. What is available has been shipped long distances and likely contains both pesticides and fruit fly eggs. I could have used a mix of pure wine and beer cultures to simulate wild yeasts, but instead I chose to culture the yeast from a batch of fresh unpasteurized sweet apple cider. This technique provided an inoculation with microorganisms known to produce fermentation without actually controlling the numbers or strains of those organisms. The beer was intended to be consumed young, so I was not overly concerned about spoilage or long-term storage. The recipe and procedure I settled on is shown in the accompanying box.

For those interested in specific numbers, the original gravity was 1.071 (much of it from dissolved starches). The final gravity was quite high as well – 1.033. As it fermented, the starch in suspension formed a pellicle on top of the kraeusen. As the foam fell, the starchy skin remained; its integrity was such that bubbles would collect underneath it, bursting only when they had grown to several centimeters in width. Much of the brown color of the liquid settled with the yeast as a starchy sediment as fermentation slowed, leaving a surprisingly pale liquor.

FINISHED BEER AND LEAVENED BREAD

After racking the beer into bottles, I performed the other half of the experiment. I removed a quantity (roughly 500 mL) of the yeast-starch-grain slurry from the bottom of the primary, warmed it slightly to rouse the yeast, and added stone-ground whole wheat flour to make a dough (about 1.5 L [6 cups]). After the dough was thoroughly mixed to a dense elastic texture, I left it to rise for 1 h in a warm place over the oven. I kneaded it, rolled it into a ball, placed it on a ceramic baking pan, and baked it at 350 °F (175 °C) for 55 min. The resulting loaf was dark and heavy and initially had a strong aroma of alcohol. The bread was hearty, though slightly bland from lack of sugar, oil, and salt. It was not unpleasant, and though not the best choice for a peanut butter sandwich, it would make an excellent vehicle for a ripe brie.
The beer was more of a surprise. My expectation was of a sour, yeasty, starchy brew, drinkable but not particularly enjoyable. Not so. The beer was quite pale and contained suspended starch, giving it the appearance of a Belgian White beer, though a degree or two darker. The level of carbonation was almost nil, though when poured with vigor a slight sparkling could be produced. Without carbonation it produced no head, so head retention was not an issue. The aroma was bready, yeasty, and cidery, with a hint of wheat. The cidery component was not like that of a beer made with too much sucrose, nor was it the acetaldehyde tang of a certain commercial American pilsner. The perception of yeastiness in the aroma faded after the first few sips. The flavor was soft and had a dry finish. No strong estery or phenolic notes were present, but a slight spiciness was detectable in the background. The high wheat content provided a bready character and may have contributed to the spicy note. The alcohol was noticeable, but not foremost. Despite the high original gravity, the beer was remarkably clean tasting. One taster compared it to Jade, a pale Flanders-style ale from the north of France, though I have never sampled this particular beer. It was good enough to warrant a second glass.

From this simple experiment we get a glimpse into the origins of beer and leavened bread. What was wholly unexpected in my results was that ancient beers may have been quite good, even by modern standards. The vagaries of wild fermentation would have precluded any form of quality control, and yet spontaneous fermentation with wild yeasts likely produced a pleasant end product often enough to keep the ancient brewers at their craft.

POSTSCRIPT

As a postscript to this experiment, buoyed by the success of my first attempt I decided to take one step further back: I wanted to reproduce the oldest beer. For this I would sprout barley in water, pound it into gruel, set it in the sun to mash, leave it open to the night air for inoculation, and see what happened. With any luck the sprouting grain and mash would be acidic enough to keep some of the bacteria at bay, and with even more luck I might pick up some interesting and inoffensive wild yeasts.
This idea, however, was misguided. I soaked whole feed barley in water, hoping that mold could be kept away by keeping the water level above the level of the grain. Within 36 h the concoction was churning and bubbling and dead weevils floated on the surface. After another 24 h, white mold was growing on the surface, and bacterial and yeast activity in the grain continued at a furious pace. I decided to discontinue the experiment. Between the putrid aroma and the fear of toxic molds, I decided perhaps I didn’t want to taste this beer after all.

This test was not a complete waste, however. Though it should perhaps be repeated in a warmer climate, it indicated that the earliest beer was not likely produced by the simple accident of grain being soaked by rainwater. The earliest beers likely did not appear until some process for mashing or malting was developed, either in the form of a gruel or a sprouted bread.

ACKNOWLEDGEMENTS

I would like to thank M. Snow and J. Pinhey for their comments on the ancient beer and T. Kavanagh for discussion and information.
REFERENCES

(1) S.H. Katz and F. Maytag, “Brewing an Ancient Beer,” Archaeology 44 (4), 24-27 (1991).
(2) R.J. Braidwood et al., “Symposium: Did Man Once Live by Beer Alone?” American Anthropologist 55, 515-526 (1953).

(3) S.H. Katz and M. Voigt, “Beer and Bread: The Early Use of Cereals in the Human Diet,” Expeditions 28, 23-34 (1986).

(4) R.J. Braidwood, “The Agricultural Revolution,” Scientific American, September 1960, 130-148

(5) J.X. Guinard, Lambic, Classic Beer Style Series 3 (Brewers Publications, Boulder, Colorado, 1990), p. 9.

Recipe for an Ancient Beer

In one pot mix:
500 g (dry weight) pulverized sprouted barley gruel
1 biscuit (~200 g dry weight) sprouted wheat or spelt bread
2 L of the last barley rinse water
200 g cracked winter wheat
In a second pot, mix:
2 biscuits (~250 g dry weight) sprouted barley bread
100 g unsprouted barley, crushed
200 g unsprouted spelt, crushed
2.5 L cold water

Thoroughly break up the biscuits and allow them to soak. While the first pot soaks at room temperature, slowly heat the second pot to boiling. Once it has reached boiling, mix the contents of the two pots, and slowly bring the temperature back to boiling. With a wooden spoon, push the mash to one side of the pot and collect the liquid (plus any grain that happens to be floating around) with a cup and transfer it to another pot. Add 1 L of boiling water to the mash, stir, and repeat the pressing procedure. Repeat this until you have collected several liters of brown, gravy-like liquid, along with some grains. Bring the wort to a boil to sterilize it, cool, and pitch with your favorite wild yeast.
I confess that in the mash I did resort to a small addition of commercial malted barley to compensate for the lack of husks on the barley I had used.

Original article:
Home Brewing an Ancient Beer
By Ed Hitchcock
Republished from BrewingTechniques’ September/October 1994.
Brewingtechniquesbrewingtechniques

Read Full Post »

Topic The oldest Fermented Drink? Part 1 

Pictures of Oregon Raspberry Mead and Wild flower Mead. 

  

 
 
 
 Mead is one of the most ancient of drinks, yes I do realize there is a debate between beer and mead makers as to which is older, but here I will just state that in my humble opinion, mead is by far the oldest-you are welcome to argue the fact if you must, I am open to debate.

Being as how I am admittedly interested if not downright obsessed with all things ancient as it relates to food I felt I should embark on the great adventure of making wine and beer myself. Now I do not have the space to make grape wine and I’m not a great fan of most beers, but I do love my honey-wine; so what a better place to start.

Last year I started with two batches of mead, both 1-gallon sized. I wasn’t sure I would enjoy it enough to keep up the hobby and I wanted one of them to be made using wild yeast so I wanted to go small.  The lesson with small (1 gallon as opposed to 3 or 5 gallons) is that you loose to much mead along the way what with racking to eliminate dead yeast cells etc, and it’s a lot of work so if you are interested I would advise at least 3 gallons to start, besides you can always through a mead party! I will post some pictures from last year along with ones from this year as I go along. As to why I didn’t blog on it last time….

The first batch of mead in 2010 was Oregon Raspberry made with commercial sweet mead yeast, and the second, Wildflower made by capturing wild yeast.  Both were a success and produced enjoyable meads but were totally different. The names reflect the honey I used for both. The Oregon Raspberry made medium sweet mead with approximately 10 percent alcohol and the Wildflower made a dry mead with about 13 percent alcohol.

I used 3 ½ pounds of honey for both and the same amount of yeast nutrient so I was able to see what the different types of honey and yeast produced. I won’t go into the procedure for these two but I will be doing so for this year’s batch.

Wild yeast can be unpredictable so I will be using commercial yeasts from now on but as you will be able to see in the photo’s I am posting not only do the meads taste different there variations in the way they look as well-mostly the foam on the wildflower mead. There was a difference in the color as well but it doesn’t show up as much in the photos.

More to come….

 

Original article:

By Joanna Linsley-Poe

copyright 2011

AncientFoods

Equipment

Read Full Post »

Topic: Beer brewed with ancient yeast

ancient yeast inclosed in amber

An aroma like bread dough permeates Raul Cano‘s lab. He has just removed the cover from a petri dish, and the odor wafts up from several gooey yellow clumps of microorganisms that have been feeding and reproducing in a dark cabinet for the past few days. Cano, a 63-year-old microbiologist at California Polytechnic State University, San Luis Obispo, inspects the smelly little mounds lovingly. “These are my babies,” he says, beaming. “My yeasty beasties.”

The dish contains a variant of Saccharomyces cerevisiae, known in culinary circles as baker’s or brewer’s yeast. But Cano didn’t get this from Whole Foods. Back in 1995, he extracted it from a 45 million-year-old fossil. The microorganisms had lain dormant since the Eocene epoch, a time when Australia split off from Antarctica and modern mammals first appeared. Then Cano brought the yeast back to life.

This reanimation of an ancient life form was a breakthrough, a discovery so shocking that the scientific community initially refused to believe it. It changed our understanding of what microorganisms are capable of. It also gave the Cal Poly researcher a brief taste of fame. For a while, he thought it might make him rich. It didn’t. Now, just when it seemed his babies would be forgotten, Cano has found a way to share them with the world.

Born and raised in pre-Castro Havana, Cano still has a noticeable Cuban accent. After the revolution, his parents were unable to escape the country, but they managed to secure him a visa and a plane ticket to Miami in early 1962. His parents would eventually follow him to the US, but for a few years Cano was on his own in a strange new country. “I was 16 at the time,” he says. “I went from foster home to foster home.”

His scientific aptitude was not immediately apparent. “I wasn’t a remarkably good student,” Cano says. “I went to community college.” He eventually transferred to Eastern Washington University, and there he discovered his calling in a microbiology class. “It was taught by a fungal geneticist,” he says. “He was terrific. He became my mentor.” Cano got his master’s and went on to earn a PhD in microbiology at the University of Montana.

In 1974, Cano went to work at Cal Poly, starting out as a fungus specialist. But by the early ’90s, he was making a name for himself by examining the contents of fossilized prehistoric tree resin—more commonly known as amber.

Scientists have been cracking open the translucent caramel-colored rock for nearly two centuries in an attempt to unlock the history of the earth. All manner of flora and fauna got trapped in the dribbling sap, and once it solidified and fossilized, the contents were preserved for aeons. “It’s a time capsule,” Cano says. “Like a Kodak moment from when the amber was formed.” The first study of the contents of amber, made public in 1856, yielded 163 species of ancient plant life.

More than a century later, amber became sexy again with the advent of gene sequencing and cloning. A 1982 paper by entomologist George Poinar explored the potential for extracting DNA from preserved creatures. The paper caused a stir in the scientific community and inspired Michael Crichton to write his best-selling dinosaur-cloning novel, Jurassic Park, which came out in 1990.

In 1993, Cano worked with Poinar and others to remove DNA from a 125 million-year-old Lebanese weevil entombed in amber. They were able to sequence segments of the bug’s genome. But even if they had the full genome, science couldn’t—and still can’t—clone it back into existence. (Just as well—it’s hard to imagine Steven Spielberg creating a blockbuster f/x extravaganza about reanimated weevils. Unless he made them 30 feet tall. With a taste for human blood.)

Two years later, however, Cano actually did manage to pull off an astonishing first—he brought back to life something that had been trapped in amber for more than 25 million years. It started with a chunk of fossilized resin from the Dominican Republic. Trapped inside was an extinct breed of stingless bee. It was dead, of course, but Cano theorized that microorganisms in the resin might simply be dormant. After all, he reasoned, some single-celled creatures are known to enter a hibernation-like state and survive for years with no air or food. Still, few believed that anything could survive after lying dormant for so long.

Cano wanted to find out. He took the contents of the ancient bee’s stomach, suspended it in saline, and spread it on a growth medium. Amazingly, something woke up and began propagating in the petri dish. Cano identified it as a bacterial spore related to the modern Bacillus sphaericus, which is used to kill mosquito larvae.

Cano’s discovery changed science’s understanding of just how extraordinarily resilient microorganisms are. “They’re the quintessential survivors,” he says. “They started when the planet was born, they’re going to stay around until the planet is dead, and then they’ll just go somewhere else.” After publishing the results of his experiment in Science, Cano found himself the center of national attention from scientists and eventually the media. This was the closest humanity had come to the discovery imagined in Jurassic Park.

Over the course of the next year, Cano would crack open several more pieces of amber and bring hundreds of strains of ancient bacteria back to life in his lab. In the process, he began to think there might be a practical use for these creatures. He launched a company, Ambergene, to explore potential biomedical applications. The premise for the venture was that ancient organisms might have antibiotic potential—they’d been out of the ecosystem for so long that nothing today would have a resistance to them. At the time, the approach—dubbed natural product discovery—was very much in vogue. Major players like Merck and Eli Lilly were making serious investments.

Creating a life-saving drug was appealing. Fabulous riches would be a nice side effect. “Altruism’s great, but it’s not that great,” Cano says. He possessed the only known samples of these strains, and he patented his revivification process to further cement his control over them. As the cofounder, part-owner, and chief scientific officer of Ambergene, Cano stood to earn a hefty chunk of any windfall that might result.

To reassure potential investors, Ambergene’s board of directors decided to confirm Cano’s claims of reanimation. He wasn’t the first to attempt to bring tiny beings back to life in this manner. But every previous reported success turned out to be a case of modern bacteria contaminating the amber during the extraction process.

//  

“I was very skeptical,” says Chip Lambert, a microbiologist tapped by Ambergene to try to duplicate Cano’s results. The company provided him with amber and all of Cano’s sterilization and extraction protocols. Lambert doubled all of the cleaning processes and added some of his own. He was still able to duplicate Cano’s discovery.

Cano didn’t mind the company checking his work if it helped Ambergene win financing. He ended up being impressed with Lambert’s efforts. “We became friends,” Cano says. “I enjoy his company. Besides working with him on some of his projects, we’d socialize, get dinner, maybe grab a beer.” (Another team of researchers working with Cano has also been able to duplicate the results.)

In April 1995, during his amber-cracking spree, Cano made another important discovery. A piece of fossilized resin from Burma yielded something that looked very similar to Saccharomyces, brewer’s or baker’s yeast. This single-celled fungus feeds on sugars and reproduces frequently—if it has enough to eat, a culture can double in population in 90 minutes. “Yeasts are found in all kinds of vegetable matter—plants, fruits, stuff like that,” Cano says. “It was fortunate for that yeast to be there at the time so it could become part of history.”

Cano was fascinated by his find. Unfortunately, this ancient strain of yeast didn’t have commercial applications that Ambergene could exploit. And none of Cano’s other discoveries were yielding biomedical breakthroughs, either. “We did find two or three microorganisms that produced some new chemical compounds,” Cano says. “But they were never pursued, because the company was broke. I was really disappointed.”

Ambergene folded in 1997. Cano went back to his lab and pursued other research, like testing petroleum-degrading bacteria in sand dunes. That project scored enormous grants for Cal Poly, as did many of Cano’s other research efforts. But he couldn’t forget his brush with fame and fortune. “It was a scientific wild ride, like an E ticket at Disneyland,” he says. “As you grow older, the thrill of the hunt becomes more and more acute, at least for me.” Meanwhile, his ancient yeast—suspended in glycerol and nutrients—lay dormant in a deep freeze.

In March 2006, chip Lambert happened to meet a guy named Peter Hackett at a ski resort in Lake Tahoe, California. Hackett is a Northern California pub owner and brewer. Before long, the conversation turned to ancient yeast. “It started as a very casual, noncommittal, you-must-be-out-of-your-mind conversation,” Hackett recalls. “He told me the story of how Cano revived the yeast, how it resembled brewer’s yeast. And then he said, ‘Wouldn’t it be interesting if we could make beer with it?'”

Lambert and Cano had toyed with the idea for 12 years. Before Ambergene went under, the company made a batch on a lark. “We called it Jurassic Amber Ale or T-Rex Lager or something, and it was pretty good,” Cano says. It was served at his daughter’s wedding, and they even sent some to the Jurassic Park 2 cast party. That experiment had Cano and Lambert itching to release a beverage commercially. But they wanted it to be something respectable.

“Brewing beer is a biotechnological process,” Cano says. “I know the essentials; I’ve taught it in classes. But the skills you need to actually make a quality beer? I had no clue.” They needed a professional brewer to take their yeast for a serious test drive. But unable to interest one, they had put the idea on ice.

Hackett, 44, was a cocky upstart in the microbrew world, known for unique recipes like Bushwacker Wheat (made with tangerines, blackberries, and sun-dried mandarins). He hadn’t really wanted to spend a cold, miserable afternoon discussing yeast from the Eocene. “But Chip is a very persistent man,” Hackett says. “It was the only way I could get him to leave me alone.” After some cajoling, the brewer agreed to try making a batch of beer with Cano’s yeast.

But Hackett had his doubts about the 45 million-year-old Saccharomyces. Beer is the result of a chemical process that takes place when yeast gobbles up sugars and excretes carbon dioxide and alcohol. The flavor depends heavily on the type of Saccharomyces doing the eating, and very few strains perform well in the hostile anaerobic conditions inside a brewing tank. “It requires a robust cell,” Hackett says. “My boss is a single-celled organism. If it’s not happy, it will let me know.”

Hackett combined the yeast with all the other ingredients that make up his popular Rat Bastard pale ale recipe, so he could easily taste its distinguishing characteristics. During the brewing, the ancient yeast’s behavior was unusual, to say the least. “It ferments violently at the start,” Hackett says, “then it falls out of suspension and the beer becomes almost clear.” From a brewer’s perspective, its behavior was schizophrenic: It began like a yeast used in ales, floating at the top. Then it began to act like yeast used in slow-fermenting lagers, settling to the bottom of the tank but not going dormant.

Normally, Hackett ends the primary fermentation process by “crashing the tank”—lowering the temperature to shock the yeast into dormancy. But that didn’t work on Cano’s yeast. “It was just sitting on the bottom and nibbling on the sugar like a couch potato,” Hackett says. A strain that had survived 45 million years in suspended animation was not about to go quietly.

Hackett was prepared to pour the batch down the drain if it tasted awful. But he discovered that the flavor of the resulting ale was unique, and not in a bad way. It was light and crisp with a citrusy, gingery tang. It was definitely worth exploring further.

The brewer began experimenting with the ancient strain. He indulged its idiosyncratic behavior, letting it ferment for an extra month in a cold storage tank. He modified the hops, a plant that adds a characteristic bitterness to beer, to complement the flavor imparted by the yeast.

Cano’s Saccharomyces coupled with Hackett’s know-how to yield a very tasty libation, which is now made and distributed under the name Fossil Fuels Brewing Company. “We won the lottery,” Hackett says. “It’s such a random thing. A yeast cell, captured in amber, found by a mad scientist. For it to perform well, for it to perform uniquely … I wouldn’t have bet on it.”

Fossil Fuels pale ale caused a stir among beer aficionados like William Brand, a former critic with The Oakland Tribune who raved about it on his blog. He noted its “light copper color and an intense clove aroma.” He liked its sweetness and the “intriguing, very odd spicy note” in the finish.

Celebrator Beer News described the ale as having a “complex and well-developed taste profile” with “fruity flavor characteristics and just a touch of lemony sweetness. The fact that it is made with such old yeast is fascinating, and given how good the beer is, no mere novelty.”

A 5-gallon glass jug containing hundreds of millions of Cano’s yeast cells is sitting on the back porch of Hackett’s brewpub in Guerneville, California, 70 miles north of San Francisco. Every half-hour or so, Hackett goes outside and shakes it up a bit. When the sun warms the contents of the jug to 70 degrees Fahrenheit, it’ll be ready.

Hackett has been stirring malted barley into 150-degree water in an enormous stainless steel tub. The hot water will break down the starch in the grain, turning it into a sugary substance called wort, which is then diluted, boiled, and transferred to a fermentation tank. When the jar of yeast has warmed up sufficiently, Hackett dumps it into the tank, where it begins to gobble up the wort.

Normally, Hackett could reuse this yeast after separating it from the freshly brewed batch of beer. New characteristics may begin to present themselves as the tiny fungi go through tens of thousands of generations. “Over time, genetic drift can occur,” Hackett says. “It mutates and evolves.”

But for Fossil Fuels’ brew, Cano prefers to create new colonies that are as close as possible to the original generation he reawakened from the chunk of amber. His yeasty beasties may not have made him a pharmaceutical millionaire, but he has finally discovered a use for them, and he wants to stay involved in the brewing process.

As Hackett finishes preparing his latest batch, Cano arrives. He has driven up from San Luis Obispo to get a pony keg of pale ale for his own personal use. And Lambert has come up from the East Bay. The scientists sit on stools as Hackett brings out pints of their beer, as well as fries, shrimp, and egg rolls hot from the brewpub’s kitchen. They’re soon ready for a second round of beer.

Fossil Fuels Brewing will start selling its beer in pubs and restaurants throughout California this fall. The company is creating beer-tap handles with hunks of amber embedded in the tip. A bigger brewery—one capable of bottling the beer when they’re ready to put it on store shelves—has been enlisted to take on the commercial production duties.

Cano is delighted with the burgeoning success of Fossil Fuels ale. It’ll earn him a little bit of money, and every pint or bottle sold could kick off a conversation about his momentous discovery 14 years ago. His only worry is that the unfiltered nature of this beer means that some of his yeast will invariably settle to the bottom of the glass or bottle, and an unscrupulous brewer could collect that and use it in another beer. The microbiologist has applied for a patent on his strains and has sequenced the genomes so he can tell if someone else has stolen it. “I am the keeper of the family jewels,” Cano says. He isn’t about to let them fall into the wrong hands.

Original article:

by Eric Biba

7/20/2009

wired.com

Read Full Post »

Topic Celtic Beer

barley-grains-ancient-celtic-beer

 

Early Celtic rulers of a community in what’s now southwestern Germany liked to party, staging elaborate feasts in a ceremonial center. The business side of their revelries was located in a nearby brewery capable of turning out large quantities of a beer with a dark, smoky, slightly sour taste, new evidence suggests.

Six specially constructed ditches previously excavated at Eberdingen-Hochdorf a 2,550-year-old Celtic settlement, were used to make high-quality barley malt, a key beer ingredient, says archaeobotanist Hans-Peter Stika of the University of Hohenheim in Stuttgart. Thousands of charred barley grains unearthed in the ditches about a decade ago came from a large malt-making enterprise, Stika reports in a paper published online Jan. 4 in Archaeological and Anthropological Sciences.

Stika bases that conclusion on a close resemblance of the ancient grains to barley malt that he made by reproducing several methods that Iron Age folk might have used. He also compared the ancient grains to malt produced in modern facilities. Upon confirming the presence of malt at the Celtic site, Stika reconstructed malt-making techniques there to determine how they must have affected beer taste.

The oldest known beer residue and brewing facilities date to 5,500 years ago in the Middle East, but archaeological clues to beer’s history are rare (Science News: Oct, 2, 2004, p. 216).

At the Celtic site, barley was soaked in the specially constructed ditches until it sprouted, Stika proposes. Grains were then dried by lighting fires at the ends of the ditches, giving the malt a smoky taste and a darkened color. Lactic acid bacteria stimulated by slow drying of soaked grains, a well-known phenomenon, added sourness to the brew.

Unlike modern beers that are flavored with flowers of the hop plant, the Eberdingen-Hochdorf brew probably contained spices such as mugwort, carrot seeds or henbane, in Stika’s opinion. Beer makers are known to have used these additives by medieval times. Excavations at the Celtic site have yielded a few seeds of henbane, a plant that also makes beer more intoxicating.

“These additives gave Celtic beer a completely different taste than what we’re used to today,” Stika says.

Heated stones placed in liquefied malt during the brewing process — a common practice later in Europe — would have added a caramelized flavor to this fermented Celtic drink, he adds. So far, no fire-cracked stones have been found at Eberdingen-Hochdorf but they may have been used to heat pulpy malt slowly, a practice documented at later brewing sites, Stika says. He suspects that fermentation was triggered by using yeast-coated brewing equipment or by adding honey or fruit, which both contain wild yeasts.

Celts consisted of Iron Age tribes, loosely tied by language and culture, that inhabited much of Western Europe from about the 11th to the first century B.C.

In the same report Stika describes another tidbit for fans of malt-beverage history: A burned medieval structure from the 14th century A.D., recently unearthed in Berlin during a construction project, contains enough barley malt to have brewed 500 liters of beer, the equivalent of nearly 60 cases.

Classics professor Max Nelson of the University of Windsor in Canada, an authority on ancient beer, largely agrees with Stika’s conclusions. Malt-making occurred at Eberdingen-Hochsdorf, and malt was probably stored in the medieval Berlin building, Nelson says.

Other stages of brewing occurred either at these sites, as suggested by Stika, or nearby, in Nelson’s view.

“Stika’s experiments go a long way toward showing how precisely barley was malted in ancient times,” he remarks.

Beer buffs today would regard Celtic beer as a strange brew not only for its flavor but because it would have been cloudy, contained yeasty sediment and been imbibed at room temperature, Nelson notes.

Stika’s insights into the range of techniques and ingredients available to Celtic beer makers should inspire modern “extreme brewers” to try out the recipe that he describes, says anthropologist Bettina Arnold of the University of Wisconsin–Milwaukee.

Perhaps they’ll find out whether Roman emperor Julian, in a 1,600-year-old poem, correctly described Celtic beer as smelling “like a billy goat.”

Original article:

By Bruce Bower, Science news

January 17, 2011

wiredscience.com

Read Full Post »

Topic-Me and Mead

On vacation today-back on Tuesday with a blog about the oldest of the fermented drinks-Mead and my firs try at making it.

I will be tasting it along with friends-today, but of course I’v tried it along the way and am pleased with my first atempt. Pitfalls and a lot of yelling -, plus hours( ok it just seamed like hours) watching the airlock for a sign of bubbles-showing fermentation—–more later, pictures too—-

 

 

Read Full Post »

Topic:Alcohol’s Neolithic Origins

Did our Neolithic ancestors turn to agriculture so that they could be sure of a tipple? US Archaeologist Patrick McGovern thinks so. The expert on identifying traces of alcohol in prehistoric sites reckons the thirst for a brew was enough of an incentive to start growing crops.

It turns out the fall of man probably didn’t begin with an apple. More likely, it was a handful of mushy figs that first led humankind astray.

Here is how the story likely began — a prehistoric human picked up some dropped fruit from the ground and popped it unsuspectingly into his or her mouth. The first effect was nothing more than an agreeably bittersweet flavor spreading across the palate. But as alcohol entered the bloodstream, the brain started sending out a new message — whatever that was, I want more of it!

Humankind’s first encounters with alcohol in the form of fermented fruit probably occurred in just such an accidental fashion. But once they were familiar with the effect, archaeologist Patrick McGovern believes, humans stopped at nothing in their pursuit of frequent intoxication.  

A secure supply of alcohol appears to have been part of the human community’s basic requirements much earlier than was long believed. As early as around 9,000 years ago, long before the invention of the wheel, inhabitants of the Neolithic village Jiahu in China were brewing a type of mead with an alcohol content of 10 percent, McGovern discovered recently.

McGovern analyzed clay shards found during excavations in China’s Yellow River Valley at his Biomolecular Archaeology Laboratory for Cuisine, Fermented Beverages, and Health at the University of Pennsylvania Museum.

The bearded archaeologist is recognized around the world as an expert when it comes to identifying traces of alcoholic drinks on prehistoric finds. He ran so-called liquid chromatography coupled with mass spectrometry on the clay remnants from Asia and found traces of tartaric acid — one of the main acids present in wine — and beeswax in the shards’ pores. It appears that prehistoric humans in China combined fruit and honey into an intoxicating brew.

Clever Survival Strategy

Additionally, plant sterols point to wild rice as an ingredient. Lacking any knowledge of chemistry, prehistoric humans eager for the intoxicating effects of alcohol apparently mixed clumps of rice with saliva in their mouths to break down the starches in the grain and convert them into malt sugar.

These pioneering brewers would then spit the chewed up rice into their brew. Husks and yeasty foam floated on top of the liquid, so they used long straws to drink from narrow necked jugs. Alcohol is still consumed this way in some regions of China.

McGovern sees this early fermentation process as a clever survival strategy. “Consuming high energy sugar and alcohol was a fabulous solution for surviving in a hostile environment with few natural resources,” he explains.

The most recent finds from China are consistent with McGovern’s chain of evidence, which suggests that the craft of making alcohol spread rapidly to various locations around the world during the Neolithic period. Shamans and village alchemists mixed fruit, herbs, spices, and grains together in pots until they formed a drinkable concoction.

But that wasn’t enough for McGovern. He carried the theory much further, aiming at a complete reinterpretation of humanity’s history. His bold thesis, which he lays out in his book “Uncorking the Past. The Quest for Wine, Beer and Other Alcoholic Beverage,” states that agriculture — and with it the entire Neolithic Revolution, which began about 11,000 years ago — are ultimately results of the irrepressible impulse toward drinking and intoxication.

A Hybrid Swill

Archaeologists have long pondered the question of which came first, bread or beer. McGovern surmises that these prehistoric humans didn’t initially have the ability to master the very complicated process of brewing beer. However, they were even more incapable of baking bread, for which wild grains are extremely unsuitable. They would have had first to separate the tiny grains from the chaff, with a yield hardly worth the great effort. If anything, the earliest bakers probably made nothing more than a barely palatable type of rough bread, containing the unwanted addition of the grain’s many husks.

It’s likely, therefore, that early farmers first enriched their diet with a hybrid swill — half fruit wine and half mead — that was actually quite nutritious. Neolithic drinkers were devoted to this precious liquid. At the excavation site of Hajji Firuz Tepe in the Zagros Mountains of northwestern Iran, McGovern discovered prehistoric wine racks used to store airtight carafes. Inhabitants of the village seasoned their alcohol with resin from Atlantic Pistachio trees. This ingredient was said to have healing properties, for example for infections, and was used as an early antibiotic.

The village’s Neolithic residents lived comfortably in spacious mud brick huts, and the archaeologist and his team found remnants of wine vessels in the kitchens of nearly all the dwellings. “Drinking wasn’t just a privilege of the wealthy in the village,” McGovern posits, and he adds that women drank their fair share as well.

A Mysterious Inscription?

In Iran of all countries, where alcohol consumption is now punishable by whipping, the American scientist found vessels containing the first evidence of prehistoric beer. At first he puzzled over the purpose of the bulbous vessels with wide openings found in the prehistoric settlement Godin Tepe. Previously known wine vessels all had smaller spouts.

McGovern was also perplexed by crisscrossed grooves scratched into the bottoms of the containers. Could it be some kind of mysterious inscription?

But back in the laboratory, he isolated calcium oxalate, known to brewers as an unwanted byproduct of beer production. Nowadays, breweries can filter the crystals out of their brew without any difficulty. Their resourceful predecessors, working 3,500 years B.C., scratched grooves into their 50-liter (13-gallon) jugs so that the tiny stones would settle out there. McGovern had discovered humankind’s first beer bottles.

The ancient farmers in Godin Tepe harvested barley from fields near the village and mashed the crop using basalt stone. Then they brewed the ground grain into a considerable range of varieties, enjoying a sweet, caramel-flavored dark beer, an amber-hued lager-like concoction, and other pleasant-tasting beverages.

Around the same time, the Sumerians were paying homage to their fertility goddess Nin-Harra, whom they considered to be the inventor of beer. The creators of Mesopotamian civilization scratched instructions for brewing beer onto small clay tablets in Nin-Harra’s honor. The main ingredient in their variety of beer was emmer, a variety of wheat that has since nearly disappeared.

Thus the human project that started with the first hominids to stumble around under fruit trees reached completion with these prehistoric beer drinkers. “Moderate alcohol consumption was advantageous for our early ancestors,” McGovern speculates, “and they adapted to it biologically.”

It is a legacy that still burdens humankind today. The archaeologist, however, sees himself as reasonably balanced in this respect. Ancestors on one side of his family, the McGoverns, opened the very first bar in their hometown of Mitchell, South Dakota. On the other side, however, an especially puritanical branch of the family originated from Norway and strictly avoided alcohol consumption.

Original article

Spiegel Online

12.24/2009

By Frank Thadeusz

Read Full Post »

 Topic:Wild Yeast Culture-Day 4
 
 First Pictures. Day 4 was actually yesterday. Thanks to my husband I also have pictures.These are of my Giza culture  just prior to it going in the refrigerator. For those of us who do not make sourdough bread every day, refrigeration is a must. The cold keep the yeast dormant. This way they do not exhaust their food supply and die off. You need to keep a good supply of live yeast cells-if you treat them right they will be supplying you with sourdough for many years.
 
  

Giza Sourdough culture1- day 4

The  picture to the left was taken just before I poured the culture into a container and put it in the refridgerator-you can see just how active it is from the bubbles on top. I had already stirred in the layer of foam that was on top.

Giza sourdough culture2-day 4

Giza Sourdough culture 3-day4

Notice how active the culture looks in all three. You want to have as many yeast cells as possible when you put this in the refrigerator. This will be your stock culture, so you need as many yeast cells in it as possible.  

Day 4 started with the culture showing about 1 inch to 1 1/2 inches of foam and underneath looking like the first photo.  

Rather than just feeding the culture, waiting an hour or so and refrigerating it, which I could have done because at this point the culture was ready, I chose instead to go for a couple more of feedings to “bump” it up. I feed at 9am and checked at three, feeding the culture again, The last feeding was about 9pm at which the culture looked as you see from the pictures except the layer of foam I had stirred in.  

Note:  A very active culture can actually exhaust its food supply if you are not careful. This is another reason for the refrigeration unless you bake everyday and who does that? Yes I said this before but it’s worth repeating. 

I will bake this weekend and post pictures next week of the breads 

There is something so magicial about taking about this process of transformation.

Read Full Post »

Topic: Sourdough Starter-Day 3 

Day 2.1 really, 11 pm last night I again feed the culture, the same as earlier, 1 cup unbleached white flour and 3/4 cup warm water.  

One batch several years ago I used white Spelt flour and you will see cultures using rye flour or even whole wheat, but for me unbleached white flour is always available and the easiest to work with.  

The culture at this stage requires your utmost  patience because it won’t look like much and I might even go so far as to say the culture could even look like it’s not going to amount to anything, but what do you have to lose-only some flour and water so keep going and you’ll be rewarded. Evening of day 2 I have a starter with a bit of foam and even more Hooch than before, still very few bubbles at least until it’s feed then there are a lot of bubbles and the culture looks chunky with flour. 

Don’t worry about those lumps-more food for the yeast to feed on. 

Day 3-10am: 

The first thing I see is heavy foam on top of the culture with defiantly more bubbles and less Hooch which means I’m getting there. The picture ( not mine but a good representation) shows what the culture looks like at this stage and it will only get even more active as you go along. Can you imagine what the first baker to experience this thought, and if he stuck with it the wonderful bread that would be his reward. 

There is now also  the distinctive sour smell, long associated  with sourdough bread, besides alot of foam and bubbles;  a  sure sign of activity.  This smell is a little different for each wild yeast cultures as is the taste. 

Now you feed your living culture-the same as earlier and contemplate a second container to split it into for your first may already be getting too small. 

Remember when you end up you should have enough culture so that you can easily use some without exhausting it. Over time this has been my only problem so this year I have a container which will hold 6 cups of culture instead of three. 

This first picture I got from the web but it will give you an idea what to look for. 

The second is me with two loaves of sourdough bread we baked in a class I taught on the subject. Stay tuned 

  

Two Sourdough loaves from my class-me too

Read Full Post »

Topic-Bread and wild yeast

It is most often called sourdough and most of the time I call it that too( it somehow seems simpler even if it’s too often associated with San Francisco) but what’s bubbling and starting foam in my laundry room right now is a much older strain of wild yeast, one that comes directly  from the Giza Plateau in Egypt. I’m putting a link for Sourdough International on my blog roll for any of you who are interested in trying a different strain of wild yeast for your bread. It’s where I bought mine, except the Oregon strains. Ed Wood’s books are a must too!

This is the third batch of Giza Sourdough I’ve started since 2004 along with a French, San Francisco and two native strains from my home state or Oregon. With the small space I have to keep cultures I have to start over from time to time but the fascination of watching the cultures grow, each so different from the other never ceases to amaze me .

I most often pair the Giza with at least one or two ancient grains when I bake with it, but it produces a fantastic bread using only unbleached white flour!

Day 1 was yesterday:

I use the directions in Ed Wood’s Classic Sourdoughs, it works like this: the Giza wild yeast comes in a packet with the equivalent of 1/4 cup flour. i added 3/4 cup flour and one cup water( tap is fine unless you don’t like your water then use bottled). Mix together stirring until your hand gets tired. I use a clean plastic bowl( pouring in boiling water before hand will ensure you kill any bacteria you don’t want. Then I cover the bowl with plastic wrap and it goes into my laundry-the warmest place I have. After about 8-10 hours you will see some activity in the form of Hooch( alcohol) on top. I have about 3 tablespoons which is pretty good. Too much and the yeast will already have used up all the food in the flour-not good.

Day Two-today:

Now I check and though the beginning culture looks dormant, the amount of hooch is small and i see small bubbles in the surface, a sure sign that I’ve got a good batch started. Time to feed the culture 1 cup of flour and 3/4 cup water, beat it again to mix and put away. It’s rather like feeding a small pet. It’s alive and if you feed it regularly it will reward you with untold loaves of the most perfect bread you have ever tasted. This will go on for several days-stay tuned.

Picture’s too!

Joanna-Linsley-Poe

 

 

 

Read Full Post »

« Newer Posts

%d bloggers like this: